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Abstract: Achieving long-term autonomy for mobile robots operating in real-world, unstructured
environments, such as farms, remains a significant challenge. Such tasks are made increasingly
complex when undertaken in the presence of moving humans or livestock. These dynamic en-
vironments require a robot to be able to adapt its immediate plans, accounting for the state
of nearby agents and possible responses they may have to the robot’s actions. Additionally, in
order to achieve longer-term goals, consideration of the limited on-board resources available to the
robot is required, especially for extended missions, such as weeding agricultural fields. To achieve
efficient long-term autonomy, it is thus crucial to understand the impact that dynamic updates to
an energy-efficient plan might have on resource usage whilst navigating through crowds or herds.
To address these challenges, we present a hierarchical planning framework that integrates an online,
dynamic path-planner with a longer-term, offline, objective-based planner. This framework acts to
achieve long-term autonomy through awareness of both dynamic responses of agents to a robot’s
motion and the limited resources available. This paper details the hierarchical approach and its
integration on a robotic platform, including a comprehensive description of the planning framework
and associated perception modules. The approach is evaluated in real-world trials on farms, requiring
both consideration of limited battery capacity and the presence of nearby moving agents. These trials
additionally demonstrate the ability of the framework to adapt resource use through variation of
the dynamic planner, allowing adaptive behaviour in changing environments. A summary video is
available at https://youtu.be/DGVTrYwJ304.
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1. Introduction
Mobile robots are increasingly finding work in unstructured environments, where they must regularly
operate over extended periods of time. These applications often involve continuously performing
routine tasks, such as cleaning indoor environments, delivering warehouse packages, or weeding
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agricultural fields. The presence of moving agents—such as pedestrians or livestock, individually or
in crowds and herds—can make these applications increasingly challenging. Mobile robots need to
be aware of the likely response of any nearby agents as they navigate, both for safety and efficiency.
This capability is especially important when operating in crowds or herds where non response-
aware planning approaches can result in the ‘frozen robot’ problem (Trautman and Krause, 2010).
Consideration of the limited resources available to a mobile robot—including time and energy—
is also important during extended operation to ensure completion in a timely manner and avoid
premature exhaustion of any mission-critical resources. However, optimisation may require a trade-
off between conflicting resources, especially in dynamic environments. A more time-efficient path
through a crowd may require the robot to travel greater distances and so use more energy. In order
to achieve efficient long-term autonomy in real-world environments, a planning framework that is
aware of both the limited resources available to a robot and the response of nearby moving agents,
is required.

Of particular interest in this paper are applications of mobile ground robots in large-scale
agriculture. These applications demand completion of a large variety of essential tasks, such as soil
sampling, weeding, crop observation, and recharging, operations often dispersed widely over large
geographic areas. Additionally, these agricultural tasks are frequently carried out in the presence
of humans and livestock. In these applications, consideration of resources available to a robot is
required both when formulating long-term mission plans, and in computing dynamic updates to
the plan. Operating in unstructured environments often requires the balancing of on-board energy
against total mission time. A typical example of this is planning through undulating terrain, where
the fastest route is not always the most energy-efficient. Similarly, navigating through a crowd of
agents—such as a herd of livestock—requires an understanding of how online deviations from an
energy-optimal reference path can impact the robot’s resource usage; a crucial consideration during
the completion of time-critical tasks such as harvesting.

In this work, we present a hierarchical path-planning framework to enable the long-term autonomy
of mobile ground robots in unstructured and dynamic environments, subject to resource constraints
on energy and time. We build upon the contributions of our prior work (Eiffert et al., 2020b)
and (Eiffert et al., 2020c), extending the description of the overall framework as well as detailing
the perception modules used for object detection, tracking, and static mapping. This framework
combines an offline, long-term planner—responsible for determining strategic-level plans prior to
navigation that account for resource constraints of the robot—with an online, dynamic planner that
both accounts for unforeseen static obstacles and allows response-aware planning in presence of
nearby moving agents. These planners are used in combination with a higher-level mode switching
module, allowing adaptation of the robot’s behaviour dependent on the detection of nearby agents
and obstacles in order to achieve resource-and-response-aware planning.

In addition, we describe a novel perception pipeline used for simultaneous 3D tracking and static
mapping, as required by the dynamic planner, and detail the integration of this pipeline into the
hierarchical planning framework. Whilst previous work has demonstrated the simultaneous detection
and mapping of static and dynamic elements in unstructured environment, the extension of these
perception pipelines for use within a dynamic planning framework for long-term autonomy has not
been previously demonstrated.

The performance of the proposed approach is evaluated in a series of simulated and real-world
trials. Simulated testing is conducted in a high-fidelity, dynamic, simulation environment and has
included comparison of performance with several different dynamic planners. These tests highlight
the ability of our planning framework to adapt its resource usage to changing constraints. A
comparison of the following dynamic planning strategies has identified how each version can be
used to optimise for either time or energy efficiency in varying crowd densities:

• A response-aware, Monte Carlo tree search (MCTS) based planner using generative recurrent
neural network (GRNN) models of social response (Eiffert et al., 2020a).
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• The state-of-the-art, socially attentive reinforcement learning (SARL) planner (Chen et al.,
2019).

• A traditional, potential field (PF) based planner.
• A purely reactive, fail-safe (FS) planner, which does not deviate from the long-term reference

path.

The analysis in this work builds upon the results of our prior work (Eiffert et al., 2020b), indicating
the potential of the presented approach to allow adaptive robot behaviour that depends on both
changing resource constraints and the presence of moving agents during extended operation.

Real-world demonstration and validation of the proposed approach’s performance has been
conducted on the University of Sydney’s Swagbot robotic platform, a robot designed for use in
extended agricultural tasks, including the weeding of pastures alongside moving agents. Evaluation
includes the continuous navigation between waypoints throughout an unstructured agricultural
field—in this scenario, locations of weeds to be sprayed using Swagbot’s on-board weed sprayer. The
robot was required to plan in an energy-efficient manner whilst in the presence of moving agents and
unknown, static obstacles. Further empirical evaluation in more densely populated environments is
also presented, featuring repeated interactions in a pedestrian crowd. The real-world performance
in terms of both safety and resource efficiency has been compared to the simulated results from
our prior work (Eiffert et al., 2020b). We additionally perform evaluation of the perception module,
discussing how an understanding of the ability of the robot to detect nearby agents should be taken
into consideration during dynamic path planning. A video summarising all trials is available at
https://youtu.be/DGVTrYwJ304.

The results confirm that the proposed hierarchical planning framework is able to allow long-term
autonomy of a mobile robot in unstructured environments. Through a combination of resource
and response-aware path planning, the safe and efficient navigation of dynamic environments with
consideration of resource constraints has been achieved. The main contributions of this paper include:

1. Comprehensive evaluation of our proposed planning framework, based on the sum of prior
work, in both simulated and real-world trials to demonstrate safety around moving agents
and adaptive resource usage for extended autonomy in unstructured and dynamic agricultural
environments.

2. Simulated testing of the framework using several different dynamic planners, including our
prior MCTS-GRNN and a state-of-the-art SARL planner, to demonstrate framework adapt-
ability and compare resource usage and tradeoffs.

3. Additional real-world testing of the framework in order to evaluate behaviour during contin-
uous interactions with moving agents.

4. Detailed evaluation of a perception module for simultaneous 3D object tracking and static
mapping of an unstructured agricultural environment in real-world trials.

The remainder of the paper is structured as follows: Section 2 describes prior work in dynamic
path planning and resource constrained path planning, focusing on agricultural applications; Section
3 describes the proposed hierarchical planning framework, detailing each module; Section 4 presents
the experimental platform and testing methodology; Section 5 summarises experimental results with
discussion in Section 6; and Section 7 presents the conclusions.

2. Background
The application of mobile robots in real-world environments has seen significant growth in recent
years. This is particularly true in more structured environments such as on-road autonomous vehicles
(Litman, 2020) and indoor service robots in shared pedestrian environments such as retail stores and
warehouses (Inam et al., 2018). However, the same levels of adoption have not yet been achieved in
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less structured environments, such as those seen in agriculture. Here, mobile robotic operations have
largely been limited to tasks based in crop rows (Bechar and Vigneault, 2017) or orchards (Carpio
et al., 2020), where dynamic elements such as moving agents are not a critical consideration, and
the environment structure lends itself to repetitive motion patterns. Similar work has applied a
‘teach-and-repeat’ approach for long term adaptive route following in unstructured environments
in the presence of moving agents (Krüsi et al., 2015). However, this work is unable to differentiate
between static and dynamic obstacles, treating all agents as static obstacles and updating an obstacle
map each planning step. Additionally, these works have not yet addressed the requirement of resource
awareness during planning, necessary for efficient long term autonomy. Whilst the ability to detect
obstacles and agents in these unstructured and uncontrolled environments is improving (Kragh and
Underwood, 2020), perception remains a more challenging problem than in the domains of indoor
or road-based use, where planar ground assumptions and lighting invariance help enable object and
traversability detection (Krüsi et al., 2017).

Furthermore, the challenge of operating under limited resource budgets becomes much more
significant when operating in off-road environments, such as large scale farms, where paths may
not be specified and operating might often involve traversing non-uniform terrain. The average
size of a farm in Australia in 2016 was 4,331 ha (ABS, 2016). As such, long-term autonomy in
these environments may require a mobile robot to travel vast distances between mission waypoints,
requiring the management of conflicting time and energy usage constraints.

2.1. Perception in Unstructured Environments
Safe and efficient navigation around moving agents requires both an accurate estimate of the current
state of the dynamic environment, and the ability to predict the future motion of any agents, in order
to plan accordingly. To achieve this in unstructured environments, it is necessary to both differentiate
between traversable ground and obstacles, as well as between static and dynamic elements of the
unknown environment.

In more structured environments, such as road based applications and indoor usage, direct 3D
object detection in point clouds has made significant advancements in recent years (Qi et al., 2017;
Zhou and Tuzel, 2018). State-of-the-art learning-based techniques have been able to take advantage
of large scale datasets of labelled 3D scenes specific to structured applications, such as the nuScenes
(Caesar et al., 2020) and KITTI (Geiger et al., 2012) datasets. Multi-modal 3D object detectors such
as frustum pointnets (Qi et al., 2018) have combined these approaches with more mature 2D object
detectors, however, these still require access to large datasets to train the 3D box segmentation and
regression networks. These techniques are not directly applicable to agricultural applications as there
do not currently exist any large scale labelled 3D datasets of all relevant objects, such as a livestock.
Additionally, these existing state-of-the-art 3D object detectors are generally not directly suitable
for unstructured environments where segmentation of traversable ground and static obstacles is a
non-trivial task, since in most road-based applications the flat ground assumption can be safely
made over local areas.

Previous work has demonstrated how ground segmentation in unstructured environments can
be achieved through the use of piecewise planar surface fitting methods (Asvadi et al., 2016) or
conditional random fields (Rummelhard et al., 2017). More recent work has applied conditional
random fields and 2D semantic segmentation to multi-modal sensor input for simultaneous ground
plane segmentation and classwise 3D object detection (Kragh and Underwood, 2020). The fusion of
2D visual input with point cloud data in this approach allows for the identification of traversable
vegetation that may otherwise be detected as static obstacles when relying only on laser input. This
is especially important in agricultural applications that require operating around weeds or long grass.
However, these approaches to ground segmentation tend to incur significant computational costs,
which is an important consideration for mobile robots operating under resource constrained extended
missions. Additionally, the extension of these perception pipelines for use within a dynamic planning
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framework—one that accounts for the responses of nearby agents to the robot’s motion—has not
yet been demonstrated in unstructured environments.

2.2. Path Planning in Dynamic Environments
Whilst crowd motion prediction models based on hand-crafted features such as PFs or the social
force model (Helbing and Molnar, 1995) have been shown to achieve satisfactory performance when
used for dynamic path planning, these methods can suffer from the ‘frozen robot’ problem when
in more complex environments (Trautman and Krause, 2010). ‘Response-aware’ predictive models
can overcome this problem by modelling the interactions between agents using methods such as
reciprocal velocity obstacles (Van Den Berg et al., 2011) or interacting Gaussian processes (Trautman
and Krause, 2010). However, in more recent literature (Ivanovic and Pavone, 2019; Eiffert and
Sukkarieh, 2019) it has been shown that for the prediction of crowd motion during human-robot
interactions, these methods can be outperformed by prediction models that use recurrent neural
networks (RNNs) to learn the response of agents to a robot’s planned path from observed data.
Use of RNN-based models within sampling-based path planning systems (Eiffert et al., 2020a)
or model-based deep reinforcement learning (RL) methods (Chen et al., 2019; Chen et al., 2020;
Fan et al., 2020) has been proposed for dynamic path planners. Whilst these methods have been
shown to enable robust dynamic path planning in unstructured and complex environments such as
pedestrian crowds, they are yet to be extended for use within a complete planning framework for
long-term autonomy. Existing approaches to extended path planning in unstructured environments,
such as in agricultural applications, have tended to not differentiate between static and dynamic
elements of the environment when planning (Carpio et al., 2020; Santos et al., 2020; Krüsi et al.,
2015). By treating unforeseen static obstacles and moving agents similarly during planning, these
approaches are unable to model the response of these agents to a robot’s future motion and are
again subject to the ‘frozen robot’ problem. The ability to continue effectively navigating when
dynamic environments grow in complexity is critical to enable completion of missions in an efficient
and timely manner. This is an especially important consideration when operating under resource
constraints, such as will occur during extended missions.

2.3. Resource Constrained Path Planning
It is necessary to anticipate the cost of performing tasks and actions in the environment in order
to best utilise mobile robots in the field. This is especially true for electric-powered wheeled mobile
robots (WMRs) in off-road and large scale environments, where the energy usage of the platform
determines the robot’s range and maximum operational time. This problem has been the topic of
our previous work on modelling the energy cost of WMR motion (Wallace et al., 2019c).

The challenge of path planning with consideration of energy usage has seen significant attention in
recent research, with techniques developed that utilise cost models for energy use in point-to-point
and coverage path planning (Qian et al., 2010; Tokekar et al., 2014; Mei et al., 2006; Wei and
Isler, 2018; Sun et al., 2020), more efficient tracking of human-piloted reference paths (Gao et al.,
2020), and planning of multi-stage paths in uneven off-road environments (Wallace et al., 2019a).
Extending these works for long-term autonomy under resource constraints has previously been
modelled as a variant of the orienteering problem in applications such as persistent environmental
monitoring (Yu et al., 2014) or data collection (Pěnička et al., 2017). Similar work has explored
approaches allowing resource recharging in transportation networks (Pourazarm and Cassandras,
2018) and logistics (Erdoǧan and Laporte, 2013). Our recent work on the orienteering problem with
replenishment (OPR) (Wallace et al., 2020) provides a generalised approach intended to handle
revisiting an arbitrary number of recharging stations, while optimising for the total completion time
of each task. This has been motivated by its application to time critical tasks in agriculture, such as
harvesting which often requires completion of entire fields within several hours to fit within logistic
constraints, or the regular herding of livestock between fields at specified times. The remainder of
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Figure 1. System overview of the hierarchical framework, illustrating the communication between the hierarchical
mode controller (red)and each planning module (yellow), including the resource-aware, long-term planner, the
response-aware, local, dynamic planner and the FS collision module. Mission objectives are provided externally
to the long-term planner. The dynamic planning module is shown here implementing our prior MCTS-GRNN
planner (Eiffert et al., 2020a).

this work presents an approach to long term autonomy under resource limitations in a dynamic
environment, analysing the impact and trade-offs of resource usage between varying dynamic path
planning approaches. Recharging has not yet been included, which will require active perception
docking and is left to future work.

3. System Framework
The proposed hierarchical planning framework combines an online, local, dynamic planning module
with an offline, long-term planner, in order to allow extended autonomy in unstructured and dynamic
environments. The work expands our prior work (Eiffert et al., 2020b), extending the description
of the overall framework, as well as detailing the perception modules for object detection, tracking,
and static mapping; utilised both by the dynamic planner and by a FS collision avoidance module.
Fig. 1 illustrates how each module is used and communicates within the hierarchical framework.
A hierarchical mode-switcher takes input from the long-term planner and dynamic planner, and
determines which reference path to pass to the path tracking module, which directly controls the
robot’s motion. This is decided based on proximity to detected agents and to the local goal. When
no dynamic agents or obstacles are detected within an 8 m radius of the robot, the local goal from
the long-term planner is used directly as reference. Otherwise, the output of the dynamic planner,
which tracks the local goal whilst avoiding dynamic agents and obstacles, is used instead. The
hierarchical mode-switcher also takes input from the FS collision avoidance module, which stops
all robot motion when an agent or obstacle is detected within a 2 m radius of the robot. Mission
objective waypoints and information regarding the operating environment, such as terrain data and
no-go areas, are provided to the long-term planner from an external source.

3.1. Perception Pipeline
Multi-modal perception of static obstacles and dynamic agents in the robot’s environment is achieved
by combining 2D object detection in an RGB camera with 3D object segmentation and tracking from
a LIDAR point cloud. Fig. 2 illustrates the steps involved in this process, resulting in classified and
tracked 3D objects and a map of non-traversable static obstacles for use by the dynamic planner.
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Figure 2. Perception pipeline used for 3D object detection and tracking. 2D object detection is performed
synchronously with 3D point cloud ground plane segmentation, object segmentation, and tracking. The tracked 3D
objects are projected onto the 2D frame and associated with 2D detections to determine object class assignment.
All non assigned 3D objects are passed to the OctoMap module to update a static map, from which a 2D ground
plane projection is used during dynamic path planning. Tracked 3D objects that have not yet been seen by the
2D camera but fit within a size threshold are included both as dynamic agents (shown in yellow in the bottom
right) and static obstacles in the 2D occupancy map.

3.1.1. 3D Segmentation and Tracking
Input point cloud processing is performed to identify and track distinct objects in 3D. It also
identifies traversable regions both for use by the FS collision avoidance module and for generating
a 2D occupancy grid, as shown in Fig. 2. This is performed in the following steps: (1) ground plane
extraction; (2) segmentation of the point cloud into candidate ‘clusters’; (3) and tracking of the
clusters in subsequent frames.

Ground plane segmentation is achieved by initially thinning the input point cloud to 25% before
creating a 1 m grid voxel map. The lowest point in each voxel is determined using only the z-axis
value, assuming the LIDAR has been mounted upright and that any roll and pitch experienced
by the robot reflects the local ground plane alignment. This assumption that sensor z-axis will be
normal to the local ground plane is only valid for short distances when operating on non-planar
ground. If the robot is on non-planar terrain, ground further away from the robot will be labelled
as non-ground and only identified as being traversable as the robot approaches it and the robot’s
z-axis approaches normal to the surface. This approach to ground segmentation has been chosen
due to the restrictions of on-board computation, as opposed to more complex methods which allow
non-planar ground, described in Section 2.1.

The set of thinned points is iterated over, computing the height differences between each point
and the lowest points in both its parent and the directly adjacent voxels. If this height difference is
less than 0.2 m, the point is labelled as ground. The resulting non-ground point cloud set, shown
in blue within the ground plane segmentation block of Fig. 2, is then passed both to the object
segmentation and tracking block and the FS collision avoidance module. The non-ground points are
then grouped into clusters using the clusters-all method described in (Douillard et al., 2011). Points
are partitioned only by local voxel adjacency, for which we use a local neighbourhood size of 0.3
m in x and y dimensions, and 0.5 m in z dimension, with a minimum cluster size of 20 points and
minimum density of 2 points for each voxel. The segmented clusters are then tracked between frames
based on centroid location. This is performed using Kuhn–Munkres association (Kuhn, 1955) and
Kalman filtering (Kalman, 1960) in 3D. Each track maintains a confidence score which is increased
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when the track is associated with a new detected cluster and decreased if not. If the confidence
drops below a threshold, the track is deleted. This allows for the continuation of tracks when an
object is briefly obstructed by other agents or when a detection is otherwise missed. The output
tracked-non-ground point set is then combined with 2D detections, as per Section 3.1.3.

3.1.2. 2D Object Detection
Object detection in the camera frame is performed using the SSD: Single Shot MultiBox Detector
convolutional neural network (CNN) (Liu et al., 2016). This network has been initialised using
the the pretrained weightings from the VOC2012 dataset and then fine-tuned on a data set of
labelled images relevant to agricultural applications. This dataset includes scenes from a number of
Sydney University farms, as well as from the publicly available ImageNet dataset (Deng et al., 2009),
focusing on the classes of cows, sheep, horses and humans in order to improve detection performance
in agricultural settings. The output of the 2D detector—a series of classified 2D bounding boxes—is
then combined with the output of the 3D segmentation and tracking module, described below.

3.1.3. 3D and 2D Fusion
The output tracked-non-ground point cloud set is then associated with the output of the 2D object
detector to determine class types by projecting the 3D point cloud onto the 2D camera frame. This
step requires knowledge of the extrinsic transform between the two sensors and intrinsic parameters
of the 2D sensor. The extrinsic transform is initially estimated, then refined using an unsupervised
calibration between a camera and a LIDAR as per (Verma et al., 2019). The 3D and 2D detections
are associated by assuming that each detected 2D bounding box corresponds only to a single object,
assigning the detected class label to the matched point cluster. This is determined by computing the
intersection over union between the detected 2D bounding box, and a projection of the 3D detection
onto the 2D plane. The Kuhn–Munkres algorithm (Kuhn, 1955) is again used to determine the best
match for each detection. Additionally, 3D bounding boxes are filtered using geometric thresholds
based on the expected range of dimensions of the class to which the current 2D detection belongs.
Class confidence is updated for each assigned cluster based on output of the 2D CNN.

The entire point cloud is then transformed into the world frame using the known robot transform,
resulting in a geo-referenced point cloud segmented into ground, unknown-non-ground, and known-
non-ground classes, with tracked centroid positions for each cluster within known-non-ground. The
relative centroid positions of all tracked objects within the known-non-ground set, as well as all
tracked objects within the unknown-non-ground set that pass the geometric threshold filter of the
largest expected class, are then passed to the dynamic planner.

3.1.4. Static Mapping
The unknown-non-ground set is passed to the static mapping module in which a probabilistic
OctoMap framework (Hornung et al., 2013) is used to continuously update a map of static obstacles
and traversable terrain. During each planning step, the output of this module is projected onto a
2D ground plane and resolved into a 60 × 60 grid of 0.5 m resolution centred on the robot’s current
position for use as an input to our dynamic path planner, as shown in Fig. 2.

3.2. Long-term Planning
The long-term planner generates a strategic level mission plan that acts as the global reference path
for the robot to track during operation. This mission plan is updated offline from sets of externally
provided objective waypoints which the robot is required to visit in order to complete tasks such as
weeding, soil sampling or—in the future—recharging. The probabilistic roadmap (PRM) algorithm
is used to generate a traversability roadmap over free space Efree, describing a set of kinematically
feasible paths through the unstructured environment. This method proceeds in two phases: a learning
phase, and a query phase. The roadmap generation occurs during the learning phase, capturing the
traversability of the environment, as outlined in Alg. 1.
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Algorithm 1. Probabilistic Roadmap Generation

1: procedure GENERATEROADMAP(Ef ree , U , ρPRM)
2: ns , rconn, v , εmin, εmax ← ρPRM
3: V ← SAMPLE(Ef ree, ns , rconn) . Sample Ef ree using chosen strategy
4: V ← V ∪ U . Append goal nodes
5: A← GENEDGES(V, rconn)
6: Acol l ← COLLISIONCHECK(A, Ef ree, εmin, εmax )
7: A← A \Acol l
8: M← V,A
9: C ← CALCENERGYCOST(M) . Using ECM model

10: return M, C
11: end procedure
1: procedure SAMPLE(Ef ree , ns , rconn, K )
2: V ← ∅
3: while |V| < ns do . Iterative rejection sampling
4: χ ← RAND(1, Ef ree × [0, 2π ])
5: (χ, z, φ, θ,C)← RKP(χ, K )
6: if ISSTABLE(χ,C) ∧ ¬ISCOLLISION(C) then
7: V ← V ∪ (χ )
8: end if
9: end while

10: return V
11: end procedure

3.2.1. Problem Definition
The environment in which the robot will operate, E ⊂ R3, is considered to be a 2D manifold
embedded in 3D space, where (x, y) 7→ z. Let the intraversible—or obstacle—regions of this
environment be denoted Eobs, such that E \ Eobs is an open set. It is therefore implied that the
freely traversible region of this environment is the closed set Efree = cl (E \ Eobs). Henceforth, let
I n

m denote the set of all integers from m to n inclusive, where m ≤ n : m,n ∈ Z. A set V of
ns states χi ∈ V : i ∈ I ns

1 are randomly sampled from Efree—each state consisting of the 3DOF
robot pose (x, y, ψ)—thereby discretising the continuous state space. Each sampling action involves
solving an optimisation problem—namely, the relaxation of a 6DOF kinematic model of the robot
onto E—and the resultant pose is then checked both for collisions with Eobs, and for static stability.

A path through the environment is defined by a continuous mapping ζi,j : [0, 1]→ R3 such that
0 7→ χi and 1 7→ χj . Each state χi is connected to its neighbours by paths in Efree to generate a
roadmapM = {V,A}, where A ⊂ V ×V is the set of arcs aij ∀ i, j ∈ V, i 6= j, dist(χi, χj) ≤ rconn

connecting all vertices which are less than rconn metres away from each other, with dist(χi, χj)
representing here the 3D Euclidean distance between sample points χi, χj .

For each candidate connecting arc aij , the CollisionCheck routine is invoked, where a
minimum-curvature Clothoid curve connecting the two poses is generated, dilated by the maximum
radial width of the robot, and subsampled along its length to check for both stability and collisions
with Eobs. If an unstable pose or collision is detected at any point along the path, or if the maximum
curvature of the clothoid path exceeds a given threshold, the candidate arc is excluded from A.

The long term energy efficient path planning problem can thus be denoted by the tuple
(M+, χ, χg), where χg = I

ns+ng

ns+1 is the set of ng goal nodes, χg,1 is the initial state, χg,ng
is the

terminal or goal state, andM+ is the roadmapM augmented with the goal vertices and associated
arcs connecting these to the roadmap.

By construction, a path π throughM+ will be feasible, and Σ shall denote the set of all possible
paths. The optimal path planning problem is therefore to find a path π∗, assuming (M+, χ, χg) and
an arc cost function c : Σ → R≥0 such that c(π∗) = min{c(π)}, or to report failure. The optimal
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Algorithm 2. Goal connection graph generation

1: procedure GENERATEGOALCONNGRAPH(M, C, U)
2: V,A←M
3: P ← ∅
4: for all i, j ∈ U do
5: Pi j ← SHORTESTPATH(M, χg,i , χg,k )
6: P ← P ∪ Pi j
7: end for
8: L← GENEDGES(U, ∞)
9: G ← U,L

10: return G,P
11: end procedure

path π∗ is considered to be δ-robustly feasible if every point along the path trace is at least δ
distance away from Eobs.

As the learning process of the roadmap generation is an iterative one, it can be performed until
an arbitrary number of samples are obtained of the environment. In more cluttered environments,
for example, it may be desirable to sample densely to ensure feasible paths amongst the obstacles
can be found reliably, whereas it may be desirable to sample more sparsely over large uncluttered
environments to reduce the size of the roadmap, and thus the cost of querying it for paths.

3.2.2. Solution Generation
This roadmapM+ is subsequently queried using Dijkstra’s algorithm, searching over the resultant
graph to generate connecting routes between the provided objective waypoints. The minimum energy
paths between all pairwise combinations of locations are determined using the energy-cost-of-motion
model developed in (Wallace et al., 2019c) and the known topography of the environment.

For extraction of the optimal motion plan from the roadmap, first let the goal connectivity graph
G = {U ,L} be defined as the graph encoding travel costs between goal nodes, where U = V \I nv

1
are the goal nodes, and the set of arcs L ⊂ U ×U are defined such that lij ∈ Pij,min : i 6= j, i, j ∈ U ,
where Pij,min ⊂ A is the set of arcs describing the minimum cost path throughM+ from χi to χj .
Pij,min is determined by querying the PRM; performed by running Dijkstra’s algorithm onM+

with start and goal points χi and χj , respectively. All Pij,min are stored along with their associated
path cost cij =

∑
aij∈Pij,min

wij for later retrieval once the optimal tour T ∗ is found.
If the specified endpoint of the tour is not coincident with the start point, then the following

arc weights are modified to enforce the precedence constraint: ci1 = ∞ : i ∈ U \ {ng}, cngi = ∞ :
i ∈ U \ {1}, cng1 = 0. This assigns an infinite cost to all incoming edges to the start node, and all
outgoing edges from the end node. Then, the edge connecting the end to the start node is given a
weight of zero, and ignored in the final solution, to obtain a Hamiltonian path through the goals,
where each vertex in the graph is visited exactly once. This procedure is outlined in Alg. 2.

An asymmetric traveling salesman problem is then solved over G to yield the optimal ordering
of waypoint visits. The energy-optimal path Pij,min is then extracted via reference toM+, thereby
producing an energy-minimising plan suitable for use as the global reference path for the dynamic
planner. Through the use of Clothoid paths for connection of poses in M+, not only will the
resulting motion plan by comprised of smooth, continuous motions, but by appropriate selection
of the curvature rejection threshold parameter, it is possible to ensure that the path is feasibly
trackable by a wide variety of vehicle classes. Combined with collision and stability checks along
these paths, the feasibility of any resultant plans are guaranteed by construction. Further details of
the above methods can be found in (Wallace, 2020).

Replanning is also possible using this method, as the roadmap M+ is persistent, allowing
alternate routes to be found by re-querying the roadmap in instances where the dynamic planner
has deviated significantly from the reference path. However, in the case where the environment state
is inconsistent with the original map, or in cluttered environments where persistent dense crowds or
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similar phenomena inhibit progress along the nominal path, Eobs would need to be updated to reflect
the intraversable area. As recomputing the entire roadmap would be a very expensive operation to
perform online, the existing roadmap can instead be pruned of any states and connections coincident
with the new Eobs, and then replanning can be conducted as normal on the modified roadmap.
Replanning was not tested in the experiments conducted in this paper, but will be implemented as
an item of future work.

3.3. Dynamic Planner
The local, dynamic planner is responsible for adapting the long-term plan based on the presence
of both nearby moving agents and unexpected static obstacles. In order to do this effectively, an
understanding of the relationship between the motion of nearby agents and the robot motion is
required, as discussed in Section 2. As such, in this work our MCTS-GRNN version of the dynamic
planner is implemented, based on our prior work (Eiffert et al., 2020a). This planner uses a learnt
GRNN model of social response to predict the likely reactions of agents to a robot’s motion. This
model is trained separately on observed robot-agent interactions and then used during a MCTS
across the robot’s action space, as shown in Fig. 3. This allows simulation of the likely next state
of a crowd for each sampled action. A state evaluation function, described in Section 3.3.2, is used
to determine the value of each sampled action with respect to both reaching the robot’s local goal
and avoiding nearby agents. The sequence of actions with the highest cumulative value is returned
by the planner each iteration, navigating the robot through a crowd towards the goal.

The dynamic planner module takes as input the tracked positions of all nearby agents, the current
robot’s state, a 2D occupancy map from the static mapping module, and the current local goal
generated by the long-term planner, outputting a planned path to the hierarchical mode-switcher
as illustrated in Fig. 1. Whilst we only consider the use of a MCTS-GRNN dynamic planner in
the real-world trials carried out in this work, the dynamic planning module within our proposed
hierarchical framework is agnostic with regards to the used planner, as shown in our prior work
(Eiffert et al., 2020b) in which a PF-based planner is implemented within the same framework for
comparison in simulation.

3.3.1. Predictive Model
The learnt model of social response used within our tested local, dynamic planner is based on a
recurrent neural network encoder-decoder (RED) baseline from (Becker et al., 2018). The input
to this model consists of a sequence of observations of an agent’s position alongside the robot’s
known relative position in order to predict the agent’s likely next position. At each timestep, the
robot’s position at the subsequent timestep Rt+1 is used alongside the agents current position Xt,
as shown in Fig. 3. This allows the model to learn the relationship between a robot’s planned action
and the likely response of an agent, thereby enabling its use as a state transition model within the
local-planner tree search. At each planning timestep tobs, the observed positions of all nearby agents
from the prior 12 timesteps up to tobs − 1 are used as input to the GRNN encoder, shown in green.
For any agents that have not been observed for the complete period, their history is extrapolated
using a constant velocity model. We use a planning timestep of 200 ms in this work, based on the
output rate of the perception module.

During training of the predictive model, the encoded output is passed to the decoder, where the
known robot positions from the ground truth trajectory are used as input at each timestep t ≥ tobs.
The observed agent positions are also used as inputs at t = tobs, however, they are replaced by zeros
in all subsequent decoding timesteps in a zero-feed approach to improve inference when the agent
future positions are not available, as described by (Zyner et al., 2019). When used for inference
within the MCTS-GRNN, the output of the encoder is instead used to form the state of the root
node within the tree search, and the decoder is used in a parallel single-step manner within the
MCTS simulation step, as discussed in Section 3.3.2 below.
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Figure 3. MCTS-GRNN planner as per our prior work (Eiffert et al., 2020a), illustrating the integration of our
learnt GRNN predictive model of social response within the simulation stage of our adapted MCTS Single-Step-
Simulation planner.

We make use of the model trained on the Vehicle-Crowd Interaction (VCI) DUT dataset (Yang
et al., 2019) of human vehicle interactions in our prior work (Eiffert et al., 2020a), as this model
best reflects the use case of the experiments carried out in this work, in which a wheeled, mobile
robot navigates around pedestrians. In (Eiffert et al., 2020a), we have also shown how our MCTS-
GRNN planner can be used when a predictive response model is not available, by substituting a
simple constant velocity model in place of the GRNN. Whilst this approach is unable to model the
relationship between a robot’s action and the likely response of a crowd, it is still able to achieve
results that outperform the compared PF method.

3.3.2. Sampling-Based Planner
Alg. 3 details the steps involved in the MCTS-GRNN response-aware planning module used within
this work. This anytime planner searches across a discretised action space of the robot, taking as
input a known state evaluation function. Each iteration, the latest observation of nearby agents is
used alongside the robot’s current state and a 2D occupancy map as per line 26 in Alg. 3. The tree
search concludes after a given time budget has been reached, returning the current best plan.

The used MCTS has been adapted for single-step simulation. This involves running the simulation
stage for only a single iteration rather than continuing until a terminal state has been reached, as
shown at line 8 of Alg. 3. As described in (Eiffert et al., 2020a), this allows parallelisation of the
simulation step by ensuring all rollouts are of the same length. Similar truncation of the simulation
stage has been shown to improve performance in game-theoretic applications such as GO (Silver
et al., 2016) and Amazon (Lorentz, 2016), when the value of a state can be directly evaluated.

The state evaluation function used during the tree search is shown in Eq. 1. This cost is dependent
on the distance of the robot to the local goal G, and the scaled distance α between the robot and each
agentXt

i for all observed agents i ∈ N at the current timestep t. The uncertainty U t
i of the prediction

for agent i is used to scale α, and is set to zero when the distance between robot and agent exceeds
a value of d, which is set to 2 m for all trials. U t

i reflects the area of the ellipse formed by 1 standard
deviation from the mean prediction. The major radius of this ellipse can in theory exceed the value
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Algorithm 3. MCTS-GRNN Planner

1: A ← Actions . discretised action space
2: B ← Budget . time in nsecs
3: C ← CostFunction() . state evaluation function
4: M ← Map . 2D Occupancy Map
5: function MCTS-SSS(ROOT, A, B, C, M)
6: Tree = createTree(root) . Create Tree with root state as first node
7: while time < B do . planning budget
8: K = Tree.select(root) . select K best nodes
9: a = Tree.expand(K, A, M) . choose valid actions

10: . parallel single-step simulation
11: if first iteration then
12: h′, Ŷ ′ = RNNDecoder(X t , a, h)
13: else
14: h′, Ŷ ′ = RNNDecoder(0, a, h)
15: end if
16: U =

√
det (cov (Ŷ ′)) . uncertainty

17: r = C(Ŷ ′,U ) . reward dependent on U
18: Tree.backup(K, r) . update node values
19: end while

return Tree
20: end function
21: while not at destination do
22: X 0:t ,R0:t−1

← observe() . Positions of nearby agents X and robot R for past t timesteps
23: . encode observed tracks
24: ht , Ŷ t = RNNEncoder(X 0:t−1,R0:t−1, h0

= 0)
25: St

root = (ht ,X t ) . create root node
26: . perform MCTS with SSS
27: Tree = MCTS-SSS(St

root ,A,B,C,M)
28: Rp = Tree.bestPlan . yield best current path
29: end while

of d, meaning that an agent may be predicted to come within the distance threshold without any
cost being considered. However, as the uncertainty tends to grow with prediction horizon length,
this would likely only occur at longer prediction timesteps and has not been observed to occur at
timesteps less than 3 s, and so not significantly influence the MCTS planner.

Cost = (Rt −G)2 +
N∑
i

U t
iα (1)

α =
{

1
Xt

i
−Rt , if Xt

i −Rt ≤ d
0, otherwise

(2)

A 2D occupancy map centred on the robot, as shown in Fig. 2, is used to constrain the action space.
During MCTS expansion only actions which do not result in a collision between the robot and the
occupancy map are allowed. The occupancy map is also dilated to the maximum radius of the robot
to prevent the problem of static obstacle ‘corner cutting’ in sampling-based planners, as described
in (Solovey and Kleinbort, 2020), in which a collision may occur between two discrete timesteps.

3.4. Hierarchical Mode-Switcher
Based on the robot’s proximity to detected dynamic agents and static obstacles, a hierarchical mode-
switching module—detailed in Alg. 4—determines whether to source the local reference trajectory
from the dynamic planner, or to follow the online update of the global path provided by the long-term
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Algorithm 4. Hierarchical Mode-Switcher

1: waypoints ← External Mission Objectives
2: LT ← LongTermPlanner()
3: LT.computeOptimalPath(waypoints)
4: LDP ← LocalDynamicPlanner()
5: PathTracker ← RecedingHorizonEstimatorController()
6: while not at LT.terminalWaypoint do
7: while not at LT.currentWaypoint do
8: if FailSafe.active then PathTracker.stop()
9: else

10: if LDP.required then . Check dynamic planning area
11: . If we expect a planning delay, immediately slow and get expected robot state after delay
12: expectedState = PathTracker.slow(LDP.planningDelay)
13: latestDynamicPlan = LDP.getPlan(expectedState) . Plan from expected end state
14: dynamicLatch.resetTimer() . Reset latching timer
15: end if
16: if dynamicLatch.timer < 2 s then . Avoid oscillating between modes
17: path = latestDynamicPlan . Use latest dynamic path
18: else
19: path = LT.localGoal . Use latest long term plan local goal update directly
20: end if
21: PathTracker(path) . Send to Path Tracking module
22: end if
23: end while
24: PathTracker.stop()
25: Weeder.actuate() . Stop and weed
26: end while

planner. This represents a crucial element in the integration of the global optimal planner and the
local, dynamic planner within this framework.

In the absence of obstacles, the default path tracking behaviour will compute a reference based
on the robot’s progress along the global path and the specified nominal speed. If a dynamic agent
or static obstacle is detected within the dynamic planning area, the dynamic planner will then
be engaged. Depending on the type of dynamic planner being used, there will be up to a 200 ms
planning delay between detection of the need to dynamically plan and the plan being finalised. In
this time, the hierarchical switcher will send an update to the RHEC tracker to decrease velocity
over the next 200 ms (or known planning delay) along the current path. The expected new velocity
and future position are passed to the dynamic planner to use as the state from which to begin
planning. In the case of the MCTS-GRNN planner described in Section 3.3, this requires predicting
the response of nearby agents to the robot’s expected state for use in the MCTS root node. In the
case of SARL, which we compare as an alternative planner in Section 4, we simply propagate agent
positions forward using the same constant velocity model used to propagate future states passed to
the value network (Chen et al., 2019).

The dynamic planning mode is latching for 2 s, ensuring that the hierarchical switcher does
not rapidly oscillate between dynamic and long term modes when an obstacle is on the edge of the
dynamic planning area resulting in unstable behaviour. This area is defined as the union of a forward
facing semicircle 4 m in radius centred on the robot’s centre, and a similarly forward facing circular
sector with subtended angle of 135◦ and radius of (4 + 2v) m, where v is the robot’s current speed.

Due to possible planning delays of the dynamic planner, we also make use of a FS collision
avoidance module, ensuring that the robot is able to reflexively react to rapid changes in its
environment without having to wait for the dynamic planner to complete planning. This module
simply stops the robot in case of a potential collision and waits for the path to clear, rather than
planning a path around obstacles. It makes use of the LIDAR input directly after ground plane
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segmentation and removal, as shown in Fig. 2 for faster reaction time. To determine if a collision is
imminent, the FS module checks a safety area in front of the robot for obstacles in a similar manner
to the dynamic planning area, however with a semicircle radius of 2 m and circular sector defined
by an angle of 90◦ and radius of (2 + v) m.

4. Experiments
The proposed planning framework has been evaluated in both real-world and simulated experiments.
Simulated trials, building upon the analysis presented in (Eiffert et al., 2020b), have been used to
allow comparison of varied dynamic planners within the hierarchical framework during extended
navigation. Subsequent real-world trials, building upon our prior trial in (Eiffert et al., 2020c), have
been used to validate performance on physical hardware deployed in a real operating environment.

During simulated trials, the framework has been compared in varying densities of agent crowds,
and when using different dynamic planner modules. Trials in (Eiffert et al., 2020b) compared the
use of a MCTS-GRNN approach, a PF-based approach, and when relying only on the FS collision
avoidance module. This work has expanded the trials to include comparison when using a state-of-
the-art reinforcement learning planner SARL (Chen et al., 2019) as the local, dynamic planner. The
real-world testing of our approach was conducted on the University of Sydney’s Swagbot agricultural
robot platform, shown in Fig. 5. Testing was performed at the University’s Arthursleigh Farm and
involved two separate trials. The first trial, detailed in (Eiffert et al., 2020c), involved extended
navigation between mission waypoints across an unstructured field 2 ha in size for the purposes of
weeding, whilst in the presence of dynamic agents and unknown obstacles. The second trial focused
exclusively on the robot’s interaction with dynamic agents and was conducted on a smaller scale
with denser crowds in order to comprehensively evaluate the behaviour of our proposed framework
during crowd and herd interactions. An overview of the real-world trials is shown in Fig. 4, detailing
the extent of the extended navigation trial (a) and crowd interaction trial (b). Additionally, an
evaluation of the perception pipeline’s ability to accurately detect the location of nearby agents was
also carried out. This was performed using a comparison between the output of the object detection
and tracking module and footage from an overhead drone, described in Section 4.2.4.

4.1. Experimental Platform
The Swagbot robotic platform was used in all trials conducted during this work. This platform is a
wheeled omnidirectional electric ground vehicle designed for use in uneven terrain such as grazing
livestock farms. The platform has a limited battery capacity of 1.97 kWh with expected drive time
of approximately 3 hours before requiring recharging. As shown in Fig. 5 (a), the robot includes an
actuated arm attached to the underside of the chassis, intended for use in tasks such as weed spraying
and soil sampling. The localisation system includes a Trimble BD982 GNSS Receiver and Orientus
V3 IMU, which provide estimates of the position and orientation of the robot. A forward-facing
Point Grey Grasshopper GS3-U3-51S5C-C and Velodyne VLP-16 LIDAR are mounted on the front
of the robot for use in obstacle detection and mapping. The configuration of these sensors results in
a limited field of view (FOV) and rear blind spot, as shown in Fig. 5 (b). Additionally, a downwards
facing RealSense D435 camera is mounted below the LIDAR for use in active perception during
weeding. As the accuracy of the active perception system was not evaluated in this work, this
camera was not utilised during the trials.

4.2. Methodology
4.2.1. Simulated Trials
Our prior work (Eiffert et al., 2020b) describes the simulated testing, in which the robot was
required to navigate between a set of mission waypoints through an unstructured environment,
taking into consideration the presence of nearby agents and a limited energy budget. Real-world
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Figure 4. Aerial map of the University of Sydney’s Arthursleigh Farm used for all real-world trials, illustrating
the location and topography of the extended navigation trial (a) and the crowd interaction trial (b).

Figure 5. University of Sydney’s Swagbot Agricultural robotic platform used in all real-world testing. (a) Photo
of Swagbot with actuated weeder extended at the extended navigation trial location. (b) Top-down illustration
of sensor FOV with obstruction of the LIDAR by the robot’s chassis, demonstrating missed detections resulting
from both sensor blindspot and crowd occlusions.

aerial terrain data from the University of Sydney’s farm at Bringelly was supplied alongside mission
waypoints to the robot in order to compute an offline reference path as per Section 3.2. Between
5-12 waypoints were supplied to the robot each iteration, with average spacing of 25 m between
each. The robot was required to visit each waypoint within the resource budget. Perception of
dynamic agents and localisation was simulated to reflect real-world sensors available on the Swagbot
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Figure 6. Simulated environment used for testing, illustrating crowd densities of 10 m2 (a) and 25 m2 (b) per
agent on a 1× 1 m grid. The long-term planner’s reference path is shown in yellow with the current waypoint as
a target. Simulated optimal reciprocal collision avoidance (ORCA) agents are shown as red arrows, with green
bounding boxes highlighting agents that the robot is currently tracking.

platform, including sensor noise and FOV limitations. The simulated environment is shown in Fig. 6,
illustrating simulated agents as red arrows, with detected agents shown in green boxes.

This simulated trial was repeated using four different framework implementations, in which the
dynamic planning module was using either: (1) MCTS-GRNN-based planner described in Section
3.3; (2) SARL (Chen et al., 2019), a state-of-the-art reinforcement learning based dynamic path
planner which uses attention based mechanisms to capture both robot-agent and agent-agent based
interactions; (3) a PF-based approach as per our prior work (Eiffert et al., 2020a); or (4) FS collision
avoidance only, with no dynamic planner, as shown in Fig. 1.

This was repeated 3 times per planner version with varying required positional accuracy at the
mission waypoints, of 5 m, 2 m and 1 m. Additionally, this testing was conducted in two different
agent crowd densities, of 10 m2 (dense) and 25 m2 (sparse) per agent, illustrated in Fig. 6. Each
test was undertaken in real-time, taking approximately 2.5 hours to reach all supplied waypoints,
depending on the type of dynamic planner and agent density used. Agents were simulated in these
trials using the ORCA (Van Den Berg et al., 2011) pedestrian motion model with speeds between
0.1–1.5 m/s and maximum neighbour distance of 1.5 m. This term has been edited from the original
implementation (Van Den Berg et al., 2011) to refer to the distance between agents excluding radii,
rather than centre to centre distance, to accommodate heterogeneous agent sizes. All simulated
trials used an agent radius of 0.5 m, and a robot radius of 1.5 m.

4.2.2. Extended Navigation Trial
The real-world extended navigation trial aimed to replicate the methodology used in the simulated
testing, involving continuous navigation between updated sets of externally provided mission
waypoints across an unstructured pastoral field. At each waypoint the robot was required to reach
a positional accuracy of 1 m in order to spray a pre-located weed, operating in the presence of both
moving agents and unknown static obstacles. Each iteration of the trial began at a base waypoint,
where a set of 5-8 objective waypoints were supplied to the robot.

An offline, resource-efficient path was again determined based on a prior terrain map generated
from aerial LIDAR survey, and used as the reference path for online local planning during navigation
to each objective. Upon returning to base, a new set of waypoints were supplied and the trial
repeated. A total of 3 sets of waypoints were reused, with testing continuing until the robot exhausted
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Figure 7. Example iterations of the extended navigation trial (a) and the crowd interaction trial (b) showing
differences in scale, agent density, and relative time spent in each planning mode. Note that the right map is shown
at 1:4 scale of the left. The reference path (dark blue) is shown alongside the actual taken path, differentiating
between when the long-term mode (light blue) and dynamic mode (purple) were each being used. The location
of all detected agents throughout each trial lap are shown as green triangles.

its energy resources. An overview map of the testing area, showing a single example iteration of the
extended trial, is illustrated in Fig. 7 (a). The hierarchical planning framework was implemented
using the same MCTS-based local, dynamic planner used in simulated trials and the perception
pipeline as described in Section 3.1. Total time of the trial was 2 hr 44 mins, covering a distance of
5.49 km, including 37 separate interactions with groups of moving agents.

4.2.3. Crowd Interaction Trial
The second real-world trial involved the continuous tracking of a reference path whilst navigating
through a sparse crowd of pedestrians. The reference path was a circuit of approximately 85 m in
length as shown in Fig. 7 (b), computed using the long-term planner but not requiring the robot
to stop at any waypoints. This trial used the same MCTS-based dynamic planner as the extended
navigation trial. Eight pedestrians were involved, who were instructed to begin outside the perimeter
of the robot’s reference path and to choose a goal point on the other side of the circuit which they
aimed to walk towards. Upon reaching their goal, pedestrians would again choose another point,
continuing back and forth for the duration of the trial. Pedestrians were not instructed to give
way to the robot, instead being told only to treat the robot as if it were being driven by a human
operator. This trial lasted a total of 21 minutes, in which time the robot completed six laps of the
reference circuit.

4.2.4. Perception Pipeline Evaluation
An evaluation of the accuracy of the object detection and tracking module was carried out during
the crowd interaction trial. This involved a comparison of the classified and tracked 3D objects
output by the perception pipeline to the ground truth positions of all nearby agents, obtained from
an aerial drone video. Aerial images were labelled at 24 fps using initial manual detection of both the
robot’s location and each pedestrian in the 2D aerial image. Kernelized correlation filter (Henriques
et al., 2015) based visual tracking was used to automatically label subsequent frames, with manual
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Figure 8. Labelled overhead image used as ground truth for perception pipeline evaluation. Robot and agent
locations are tracked in green, with scale and robot orientation being determined by location and size of red robot
chassis and white antenna of known geometry in each frame, as identified in the inset.

re-initialisation of tracks as required. 2D pixel position of each pedestrian in polar coordinates,
relative to the robot’s location, was saved each frame.

Tracked positions were then transformed into global scale relative to the robot’s orientation.
Global scale was estimated each frame using the known geometry of the robot and visible features
on the robot as fiducial markers. This included identifying the outline of the red chassis and the
location of the two white aerial enclosures each frame through the use of colour based thresholding
and contour detection within the tracked 2D bounding box of the robot. These features are visible
in the top-down image Fig. 5 (b). These centres of each marker were tracked between frames using
Kalman filtering (Kalman, 1960), and used to determine both the orientation of the robot, and the
pixel-to-metre scaling for each frame. An example labelled frame is shown in Fig. 8, illustrating
both the tracked 2D boxes and scaling markers.

Comparison of the ground truth labels to detection output was done at 2 Hz using a total of
2420 frames. Each ground truth labelled position was marked as ‘detected’ if a detection was made
within a 1 m radius of the label with up to 0.5 s difference in timestamp. Section 5.3 summarises the
results of this trial, describing the recall and precision of the perception pipeline across the robot’s
sensing space.

4.3. Metrics
Performance in all trials, both real-world and simulated, has been compared based on metrics of: (1)
distance to closest agent; (2) energy usage per metre gained towards the goal; (3) velocity towards
the goal; and (4) deviation from the reference path. Metrics 2, 3 and 4 have all been calculated
in varying crowd densities to determine the impact of more complex environments on resource
efficiency.

Metric 1 represents the ability of each planner to effectively navigate through crowds, providing a
measure of the safety of the system around moving agents and the number of potential near-collisions.
Metric 2 represents the energy expenditure of each trial, and has been normalised for comparison
between trials as J/m gained towards goal. This was chosen over the average energy usage per trial
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as it allows direct comparison of energy usage in varying crowd densities. Power usage is calculated
using the learnt energy-cost-of-motion model outlined in Eq. 6, derived below:

P = F · v +
∑
s∈S

ςs(t) (3)

= F · v +
∑
s∈S

qsςs (4)

= (mig sin (ε) + µiN) · v +
∑
s∈S

qsςs (5)

= (sin (ε) + µi cos (ε)) ·migv +
∑
s∈S

qsςs (6)

where P is the instantaneous power draw of the robot, F is the force acting in the direction of
motion, v is the speed of the robot in meters per second, ε is the slope of the terrain along the
robot’s path of motion in radians, mi is the mass of the platform at the time of run i, g is the
acceleration due to gravity, N is the normal force acting perpendicular to the ground, µ is the
coefficient of rolling friction at the site of the run, ςs(t) and ςs are the dynamic and static power
draw of subsystem s ∈ S, respectively—where S is the set of computers, sensors and actuators—and
qs ∈ {0, 1} is a binary variable with a value of 1 if a given subsystem is active, or 0 if it is not. For
the experiments conducted in this work, mi = 220.6 kg, µi = 0.0767, and the static power draw of
the system is

∑
s∈S

qsςs = 203 W. Further details can be found in (Wallace et al., 2019c).

Metric 3 represents the navigation time efficiency of each trial. Similarly to metric 2, velocity
towards goal was chosen over total experiment time—a more intuitive metric for time efficiency—as
it can be determined at every timestep to allow comparison in varying agent densities. For the
analysis done in Section 5.2, the average velocity across every 1 second period during each trial was
used against the maximum number of agents detected within the same period.

Metric 4 represents the ability of the planner to accurately follow the energy efficient path,
a crucial consideration in environments with large elevation changes that may lead to significant
energy usage to return to the reference path after a minor deviation.

4.4. Implementation
During the real-world trials carried out in this work, the output of the static mapping module was
not utilised by the dynamic planner. This was done for clarity, allowing testing to focus on the
performance of the planning framework around moving agents only, and relying on the FS collision
avoidance module to ensure safety around static obstacles.

Due to the limited sensor FOV, as indicated in Fig. 5 (b), the robot was constrained to operate in
forward-only Ackermann configuration during the simulated tests. This was done to restrict motion
in directions without adequate perception coverage for safety precautions. In the real-world trials,
an alternate approach was used, where this FOV safety constraint was instead enforced in the local
path planning step, which would only generate paths in the region covered by the robot’s sensors.
This change was taken after observing that operation in forward-only Ackermann configuration
often made direct and precise visitation of goal locations in the presence of numerous moving agents
difficult, due to the mobility constraints it imposes.

The nominal path tracking module used in the simulated tests utilised a slip-compensating
receding horizon estimation and control (RHEC) framework—which uses model-based localisation
and predictive control to minimise cross-track and speed tracking error (Wallace et al., 2019b;
Wallace et al., 2019d). This strategy utilised a forward-only Ackermann motion model. In the
real-world tests, however, a pure pursuit path tracker in conjunction with a holonomic motion
model was used instead; employing a PID controller to drive the robot’s positional error relative
to a moving target point to zero via linear and angular velocity control of the motion base. The
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change in path tracking strategy for the real-world runs was chosen as it did not artificially restrict
the holonomic motion capabilities of the platform—as the Ackermann-based RHEC strategy would
have—thereby allowing more direct motion towards the goal locations to be realised. Both trackers
otherwise worked to maintain constant speed, and control orientation to face the direction of travel
along the reference path.

During operation, the long-term planner outputs an online local goal which moves along the
computed global reference path 10 m in front of the robot’s position towards the next waypoint.
This local goal is tracked by either the dynamic planner, described in Section 3.3, or directly by the
nominal path tracking module described above, depending on the mode dictated by the hierarchical
mode controller module. The dynamic planner additionally generated plans which forbid reversing, in
order to restrict the robot from moving into areas in its blindspot. For generation of the long-term
energy-efficient path plans, the PRM strategy introduced in Section 3.2 was used for roadmap
generation, using a connection radius rconn = 4 m and a maximum curvature constraint value
corresponding to a max Ackermann steering angle of 35◦.

For the purposes of all trials in this work, pedestrians—rather than livestock—were used as
dynamic agents. This was decided for a number of reasons, including compatibility with simulated
trials, available response prediction models, and safety of agents. As discussed in (Eiffert and
Sukkarieh, 2019), the use of mobile robots around livestock is not as widespread as for pedestrians or
traffic, with little work done to explore how best to model livestock motion, especially in response to
a robot. Whilst (Eiffert and Sukkarieh, 2019) was able to show improved prediction accuracy on the
livestock ARATH dataset (Underwood et al., 2013) using spatio temporal graph RNNs (STGRNN)
compared to constant velocity models, later work (Eiffert et al., 2020a) showed that when using
the simpler GRNN model used in this work—required for use in the MCTS-GRNN due to faster
inference speed than STGRNN—the motion prediction accuracy for livestock was significantly worse
than for pedestrians. This was likely due to the motion of livestock being dependent both on animal
orientation and relationships within a herd, which were not captured in the GRNN model.

Due to the unavailability of a livestock motion model, all simulated trials make use of ORCA
pedestrian motion model (Van Den Berg et al., 2011) for dynamic agents. Similarly, pedestrians
have been used in all real-world trials due to the availability of a response prediction model of
person-robot interactions from our prior work (Eiffert et al., 2020a) and to allow comparison to
simulated results. Additionally, the use of pedestrians in all trials, as opposed to livestock, allows
better comparison of our framework to prior state-of-the-art path planners discussed in Section 2.2.
Finally, safety of agents is a concern when testing planning approaches in real-world trials. The
Swagbot robotic platform is a large vehicle weighing over 200 kg and can cause serious bodily injury
when travelling at speed, necessitating the use of willing participants until safety around moving
agents can be proven.

5. Results
Combined results from the simulated testing, extended navigation trial and crowd interaction trial
allow a comprehensive evaluation of the performance of our proposed framework in a variety of
scenarios. This allows us to evaluate performance in regards to both the ability to safely and
effectively navigate through dynamic environments in the presence of moving agents, and the ability
to efficiently follow a reference path during resource constrained navigation.

5.1. Dynamic Planning and Collision Avoidance
Fig. 9 illustrates a single planning step of the navigation framework during the crowd interaction
trial, in which the robot is navigating towards the current local goal along the reference path output
by the long-term planner, whilst accounting for the nearby observed agents. This example shows
the chosen path of the robot in purple and the predicted responses of each considered agent as a
bivariate Gaussian heatmap over each future timestep. The tree search, shown in green, illustrates
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Figure 9. An example planning step of the MCTS-GRNN dynamic planner during the crowd interaction trial,
illustrating the full search tree in green and the chosen best path in purple as the robot attempts to navigate to
the next supplied position along the reference path. The predicted bivariate Gaussian response of each pedestrian
considered during planning is shown as a heatmap extending over 2 standard deviations, based on the observed
prior positions. The chosen path and predictions are both shown across 8 timesteps.

t=0.0s t=1.0s t=2.0s

Figure 10. Subsequent time steps to Fig. 9 during the crowd interaction trial. The robot’s best path found
using the MCTS-GRNN dynamic planner is shown in yellow as it tracks the reference path (dark blue). The mean
predicted path of each agent in response to this chosen path is shown in purple. Step 1 shows the robot choosing
a path behind the approaching agent. In step 2, when the agent stops rather than following the predicted motion,
the robot updates its plan accordingly. In step 3, the robot returns to the reference path, avoiding the new agents.
Only agents tracked by the robot each timestep are highlighted.

the exploration of the robot’s action space and its consideration of actions that better follow the
reference path. As expected, the dynamic planner takes into account the predicted future motion
of the agent moving into the robot’s path, choosing a path that will drive the robot behind the
predicted travel of the agent to better reach the next local goal in fewer planning steps.

Fig. 10 expands on this example, showing 2 subsequent timesteps of the same interaction. For
clarity, these examples are shown at 1 second intervals, rather than the actual planning timestep
of 0.2 seconds. The initial step (left) shows the same path as Fig. 9, restricted to 5 planning steps.
However, by the next timestep (middle) the motion of the agent ahead of the robot has slowed,
resulting in the dynamic planner updating its proposed plan to travel in front of the individual. The
third timestep (right) shows the robot rejoining the reference path once it has effectively navigated
through the interaction, again avoiding the newly approaching agents in the right of the frame.
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Figure 11. Example scenarios from the crowd interactions trial, illustrating the behaviour of the robot around
dynamic agents. Both examples (a) and (b) demonstrate collision avoidance ability of the system when using the
MCTS-GRNN dynamic planning module, as well as the preference to return to the resource efficient long term
plan when clear of any agents. Please refer to the supplementary video for more examples.

Further examples of robot crowd interaction are illustrated in Fig. 11, with each column showing
a single example over a longer time period in 4 second timesteps. The robot’s history is shown in
either purple or blue depending on whether it was using the dynamic or long term mode respectively
at that time. These examples further demonstrate robot behaviour in the presence of moving agents,
demonstrating how the interplay between each planning mode allows for both efficient navigation
through crowds and the return to the reference path when possible. These examples also demonstrate
the latching behaviour of the hierarchical mode-switcher described in Section 3.4. This ensures that
the dynamic path is used for a period of time after clearing an interaction to avoid oscillating back
and forth between planning modes due to noisy perception of an agent on the edge of the dynamic
planning area.

A quantitative comparison of the results from the real-world tests and the simulated testing is
illustrated in Fig. 12. This histogram illustrates the minimum distance between the robot and all
surrounding agents, shown as a percentage of occurrence of each distance for all times in which an
agent was detected within an 8 m radius of the robot. This distance excludes an additional 1.5 m
radius from the robot’s centre, which accounts for the physical extent of the robotic platform. This
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Figure 12. A comparison of the distance to the closest agent throughout all trials, simulated and real,
illustrates the ability of each implementation to effectively avoid collisions with moving agents. Distances are
show as a histogram of occurrence percentage for all times an agent was within 8 m. Combined results for the
extended navigation trial and crowd interaction real-world trials are shown in red. Whilst all simulated planner
implementations demonstrate similar ability to avoid collision with agents, there is a significant difference between
the real-world and simulated results using the same MCTS planner implementation, suggesting differences in agent
behaviour in the presence of the robot.

comparison highlights both the safety of the proposed hierarchical approach whilst also indicating
differences between the simulated trials and real-world trials in terms of agent behaviour. Please
refer to the supplementary video for more examples of robot behaviour and collision avoidance
performance in all tested versions.

The real-world results, shown in red, combine both the extended navigation trial and crowd
interaction trial. These results demonstrate that the robot is able to effectively maintain a safe
distance from agents, keeping an average minimum distance of 3.48 m to the nearest agent. As
described in Section 3, the FS collision avoidance module ensures that all robot motion is stopped
whenever an obstacle or agent is detected within 2.0 m of the robot (3.5 m from the robot’s centre). A
single instance of distance less than 1.5 m occurred during real-world testing, where the robot turned
on the spot without realising that a person was in its blind spot, as shown in Fig. 5. This was a result
of both the limited sensor FOV, and a discrepancy between the holonomic dynamics of the real-world
robotic platform and the non-holonomic Ackermann assumptions of the dynamic path planner. The
simulated results demonstrate significantly less distance maintained between the robot and dynamic
agents during testing for all compared framework versions, with average minimum distances of 3.24
m, 3.17 m, 3.20 m, and 3.25 m for the MCTS, SARL, PF, and FS methods respectively. Additionally,
notable peaks are observed for all versions at the FS limit of 2 m. All tested versions were still able
to maintain a safe distance from agents, highlighting the safety of the proposed approach even when
using dynamic planner versions that attempt to navigate around agents, and the response-aware
MCTS-GRNN version which plans with the expectation that agents will respond to its actions.

A comparison of peaks between the results of real-world and simulated MCTS trials indicates
a difference in agent behaviour. In Section 3.3.2 we describe the state evaluation function used in
all MCTS tests, where we use a value of d = 2 in Eq. 1. This value means that no cost is applied
when the robot approaches an agent up to a distance of 2 m, and was used in both real-world
and simulated MCTS trials. As all simulated agents used a maximum neighbour distance of 1.5 m
(excluding agent or robot radii), as described in Section 4, the peaks at 2 m observed in simulated
trials matches expectations, as the agents approach the FS robot limit. Comparatively, the real
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pedestrians maintain a greater distance on average. While the results show safe distances were
maintained during all tests, it may still be preferable to increase the value of d in future experiments
to better reflect the preferred distance of real humans for less intrusive robot behaviour.

5.2. Resource Efficient Navigation
The primary resources considered in this work include the energy usage and time taken during
navigation between waypoints. In real-world applications—such as deployment on agricultural
properties for weeding—additional quantities, such as herbicide, would also need to be managed. Our
results again demonstrate that the hierarchical framework can achieve varying resource efficiencies
through the use of different dynamic planning modules, and that agent density greatly influences
both energy and time efficiency.

Performance is again compared between the real-world tests—the extended navigation and crowd
interaction trials—and the simulated trials, with each using either the MCTS-GRNN dynamic
planning module, SARL (Chen et al., 2019), the PF dynamic planner, or simply the FS only. Fig. 13
illustrates the energy usage of the robotic platform in all trials for increasing crowd densities. This
is shown as the energy required to reach a waypoint, normalised for comparison between trials as
J/m gained towards goal.

Whilst energy usage is similar between all framework versions when not in the presence of any
moving agents, there is significant difference in usage in increasingly dense crowds. The increase in
energy usage at a density of 5 agents within 8 m as a percentage of energy usage at a density of
zero for MCTS and SARL versions are just 33.5% and 58.0% respectively, whereas PF increases
178% and FS version 1230%. The immense increase in FS is a result of it sitting stationary for
extended periods of time waiting for agents to move and the base power draw of 203W for the
robotic platform, detailed in Section 4 . The real-world MCTS version uses 148% of it’s baseline
energy usage, significantly more than the simulated version, suggesting a greater tendency to rapidly
change velocity. This may be a result of the real-world perception not detecting agents until they
are much closer to the robot, as discussed in Section 5.3.

All trials undertaken in this work use environments with less than 5 m maximum elevation change
and no slopes with a gradients over 6 ◦. However, in environments with significantly steeper slopes,
deviation from the optimal reference path can lead to much greater changes in energy use. Fig. 15
shows the ability of each tested framework implementation to accurately track the reference path in
increasing crowd densities. Whilst the FS and PF versions use more energy in the simulated trials
than MCTS or SARL, they also deviate significantly less in denser crowds, with the FS version
never deviating more than 0.2 m from the reference path. As the FS implementation demonstrates
expected minimal deviation, these results are considered a baseline for comparison. This results
suggests that in more difficult terrain, the simpler planners may lead to decreased energy usage.

Fig. 14 compares the robot’s navigation time efficiency against crowd density, in terms of velocity
(m/s) towards the goal. All tested methods achieve a similar velocity towards goal of between 0.8
and 0.9 m/s median value when there are no agents present. However, a large drop in performance
of 80.7%—a reduction in goal approach velocity from 0.88 to 0.17 m/s—is seen in the baseline FS
version when only a single agent is introduced. A similar drop in performance of 77.8% is seen
with the non response-aware PF approach. Comparatively, decreases of just 23.0% and 38.3% are
seen when using the MCTS and SARL versions respectively in the same simulated environment.
This result is reflected in the real-world trials where a decrease of just 43.0% is seen for MCTS.
Additionally, the FS version approaches a velocity of 0 m/s with just 2 agents within an 8 m radius
of the robot. Whilst the PF and MCTS versions deviate significantly from the optimal path in the
presence of increasing crowd density, they are able to continue making progress towards the goal
even in the most dense tested crowd of 5 agents within the robot’s vicinity.

These results suggest that resource efficiency tradeoffs are dependent both on the choice of module
used within the framework, and the expected environment. Whilst the use of a response-aware
dynamic planner better able to navigate crowds can greatly decrease the total time taken, resulting
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Figure 13. Energy efficiency in varying crowd densities, represented by energy used to move 1 m towards the
goal (J/m). MCTS or SARL are able to effectively navigating through denser crowds, using the least energy.
The FS version uses significantly more energy than any other tested dynamic planning module as crowd density
increases. Median values are shown as well as Q1 and Q3 errors.
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Figure 14. Navigation time efficiency in varying crowd densities, represented by velocity towards the goal.
Both the crowd response aware MCTS and SARL implementations of the planning framework are better able
to continue navigating towards the goal as the crowd density increases compared to the FS and PF versions
in simulation. The FS version approaches a velocity of 0 m/s in density=2, spending the majority of its time
stationary. Median values are shown as well as Q1 and Q3 errors.

in significant energy savings, it also has the potential to greatly increase energy usage in uneven
terrain.

5.3. Object Detection and Tracking
Fig. 16 illustrates ability of the perception pipeline used within the hierarchical framework to
correctly detect the location of nearby agents. Recall—representing the probability that a present
agent will be detected—is shown up to a range of 15 m across the robot’s sensing space. As shown in
Fig. 5, the robot’s sensor FOV is limited, with the 2D camera covering only part of the forward-facing
quadrant, from −38◦ to +38◦ and the LIDAR partially obstructed beyond ±140◦ by the robot’s
frame and legs. Whilst the angular distributions of Fig. 16 match expectations based on the FOV,
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Figure 15. Deviation from the optimal energy efficient path in varying crowd densities for each framework
implementation. This is an important consideration in environments with large changes in elevation, where
deviating from the reference path can lead to significantly large energy use. FS version does not deviate from
the reference path at all. PF deviates significantly less than both MCTS and SARL versions. Median values are
shown as well as Q1 and Q3 errors.

Table 1. Recall and precision of the perception pipeline across the robot’s sensing space, based on distance
(0-4 m, 4-8 m and 8 m+) and quadrant (front: |φ| ≤ 45◦; sides: 135◦ ≥ |φ| > 45◦; rear: |φ| > 135◦, where φ is
as per Fig. 16). Note that no detections exist in the rear quadrant at distances beyond 8 m.

Recall Precision
Quadrant 0-4 m 4-8 m 8 m+ 0-4 m 4-8 m 8 m+
Front 0.850 0.720 0.057 1.00 1.00 0.77
Sides 0.642 0.510 0.033 0.974 0.982 0.72
Rear 0.097 0.168 0.00 0.031 0.424 N/A

there exist a number of missed detections directly in front of the robot within a range of 5 m. Out of
a total of 1406 missed detections, 1 occurred within 2.5 m, and 15 occurred within 5 m in the robot’s
forward-facing quadrant. This result emphasises the importance of using a FS collision avoidance
system which is not reliant on synchronised association between LIDAR and 2D camera, nor on 2D
detections of objects. Instead, it directly uses the output of the LIDAR after removal of the ground
plane, as shown in Fig. 2.

Table 1 summarises both precision and recall across the sensing space. Whilst recall gives an
indication of the safety of the system, precision provides a measure of how often false positives
occur—important when considering the efficiency of the overall system. As shown in Section 5.2,
efficiency in terms of both time and energy usage decrease in the presence of more dynamic agents
for all tested planner versions. As such a minimisation of false detections will lead to more efficient
resource usage as the robot does not have to react to non-existent obstacles. The precision of the
tested perception pipeline is high up to 8 m in both the front quadrant, where 2D and LIDAR
sensing is available, and the side quadrants, with only LIDAR, but drops significantly in the rear
quadrant. This suggests that the decision to limit consideration of detections to just the forward
and side facing areas described in Section 3.4 for both the fail safe module and dynamic planners
was beneficial to resource efficiency.

Additionally, Fig. 16 highlights the limitations of the robot’s ability to accurately observe the
state of any crowd or herd it is within. This limitation should be considered both during planning
around moving agents and during the training of any predictive model of agent motion that will
use the robot’s current observed state during real-world inference. A better understanding of agent
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Figure 16. Probability of detecting a present agent (recall) within a 15 m radius of the robot, based on the
output of the perception pipeline evaluation as per Section 4.2.4. The robot’s sensor FOV is shown around the
heatmap perimeter, with the 2D camera covering ±38◦ and the LIDAR partially obstructed beyond ±140◦.

observation probability across the robot’s planning space could be used to inform a robot when
planning in crowded environments. In both simulated trials and real-world trials carried out during
this work, the robot’s motion was restricted to the forward quadrant due to sensor FOV. However,
Fig. 16 demonstrates relatively high observation likelihood extending beyond this quadrant into
planning space covered only by LIDAR, suggesting that movement in these directions should also
be allowed by the dynamic planning module.

Whilst predictive models such as that used by the MCTS-GRNN dynamic planner are trained
using full knowledge of nearby agents, this is not the case in real-world implementations in which
the input to these models is limited to only the robot’s observations. These observations are limited
by the FOV of the robot’s on board sensors and possible occlusions in a crowd, as shown in Fig. 5.
As these models are intended for use in predicting the response of an agent to a robot’s motion,
they will invariably be incorrect when the agent is reacting to other unobserved agents. Similarly,
the models will be incorrect when unable to observe the complete history of an agent due to missed
detections. By instead training these models using only the position of agents observable to the
robot as input, they will better reflect real-world use. As the ground truth motion of each agent will
still reflect its response to other unobserved agents, these models may better learn to predict the
motion of agents in partially observed crowds or herds and assign greater uncertainty in situations
without full observability of a crowd, as will be experienced in real robotic implementations.

6. Discussion
6.1. Offline Crowd-Density Considerations
The results in Section 5.2 highlight the influence of nearby agent density on both energy and time
efficiency during navigation. This observation suggests that the expected crowd or herd density
that the robot will encounter should be a consideration during the initial, offline planning step.
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Prior knowledge of areas in the environment where energy-efficient motion may be compromised
due to the presence of crowds—which often necessitate deviation from the optimal path to navigate
safely—would enable better estimates of the energy expenditure for a given plan. Over extended
missions, such foreknowledge would allow the robot to better determine when it needs to return
to charging stations and should also be considered alongside terrain in the energy-cost-of-motion
model used to compute the optimal path. In addition, advance information would allow including a
safety factor in resource usage when operating in areas with unknown possible crowd densities.

6.2. Online Adaptive Framework
In all trials undertaken in this work, the hierarchical framework was deployed using a single type
of dynamic planning module in each implementation. However, the hierarchical mode-switcher is
currently structured to take input from multiple planners simultaneously. By allowing the type of
dynamic planner used to vary during operation, the framework could allow changing behaviour,
optimising for different resource constraints, as required. A common example would be when it is
desirable for a robot to use its resources efficiently whilst also meeting a deadline. While the simpler
FS and PF planners would reduce energy costs due to path deviation on undulating terrain, this
gain comes at the cost of time, and in many circumstances—such as in crowded environments—
this trade-off can quickly become unfavourable. By switching to a dynamic planner better able to
negotiate crowds, such as the MCTS-GRNN or SARL versions, the behaviour of the robot could
be easily changed to take a faster path, diverging from the energy optimal path, at the possible
expense of energy due to variations in terrain.

6.3. Predictive Model Limitations
The predictive model used within the MCTS-GRNN dynamic planner was trained on a dataset of
robot-pedestrian interactions obtained in a semi-structured, shared-road environment. Additionally,
it was clear to neighbouring pedestrians that vehicles used in the dataset were all human-operated.
Whilst the pedestrians in our study were instructed to treat the mobile robot as though it were
also human-operated, it is unlikely that their behaviours and responses to the robot’s motion would
have remained the same as the pedestrians in the training dataset, thus leading to inaccuracies
in the predictions of the dynamic planner. Due to different social cues and norms between groups
of humans and animals, it is likely that any predictive model will only learn the response of the
training population to the observed robot type and behaviour, and would experience distribution
shift even as the training group became acquainted with the robot throughout testing, leading to
inaccurate response prediction. To overcome this issue, an online version of the predictive model
would be required, with the ability to update based on observed differences between the predicted
and actual motion of nearby agents during interactions.

7. Conclusion
Through the analysis of simulated and real-world trials—both prior and new—this work has demon-
strated how a resource-limited, mobile robot can achieve extended autonomy for large-scale farming
missions. We have achieved this goal through the use of our presented planning framework, whihc
is based on the sum of prior work. This framework has been shown to allow both resource-aware
and crowd-response-aware path planning in unstructured and dynamic real-world environments.

The trials undertaken in this study have involved both the weeding of pastures alongside moving
agents and navigation through more densely populated environments. Analysis of results, based
on resource usages of energy and time and the ability to effectively navigate crowds, have shown
efficient resource usage as well as safety around moving agents. Comparisons of the framework
when using varied local, dynamic planning methods in simulation have also demonstrated how
resource usage can be adapted to suit the environment without adversely impacting safety. Whilst
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the response-aware MCTS-GRNN and state-of-the-art reinforcement learning SARL instances of
the framework both yielded improved navigation time-efficiency, they deviated significantly more
from the optimal energy-efficient path than the simpler PF and baseline FS versions. While this
difference did not lead to increased energy usage in the relatively uniform terrain of this work, in
more uneven terrain it could lead to significantly greater energy usage and should be a consideration
when choosing the appropriate planning strategy.

Finally, evaluation of the tested perception pipeline used in all real-world trials has provided a
measure of the robot’s ability to detect nearby agents across its planning space. An understanding
of this agent observation likelihood could be used to improve planning in crowded environments,
both by allowing for the learning of improved models of agent motion in partially observable crowds,
and by better informing sampling-based planners during a search of the agent’s action space.

Avenues for future work include the integration of recharging (Wallace et al., 2020) into the
framework, as well as direct consideration of energy costs in the local-planning stage, both offline as
discussed in Section 6.1, and online as discussed in Section 6.2. Additionally, adding a subsequent
trajectory-refinement step to the hierarchical planning framework, leveraging strategies such as those
presented in (Gao et al., 2020), may help further improve path smoothness and motion efficiency.
Finally, to better predict how livestock may respond to a mobile robot, we plan to improve the
perception pipeline to allow estimation of livestock orientation as well as implementing an improved
motion prediction model which can capture intra-herd dependencies through the use of attention
mechanisms.

Appendix
A multimedia file is included as an appendix to this work. This file comprises a video containing
an overview of all experiments presented in this work, and additional qualitative examples of robot
behaviour. The video is also available at https://youtu.be/DGVTrYwJ304.
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