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Abstract: In this paper we present an autonomous robotic system for picking, transporting, and
precisely placing magnetically graspable objects. Such a system would be especially beneficial
for construction tasks where human presence is not possible, e.g. due to chemical or radioactive
pollution. The system comprises of two primary components – a wheeled, mobile platform and
a manipulator arm. Both are interconnected through an onboard computer and utilize various
onboard sensors for estimating the state of the robot and its surroundings. By using efficient
processing algorithms, data from the onboard sensors can be used in a feedback loop during all
critical operational sections, resulting in a robust system capable of operating on uneven terrain
and in environments without access to satellite navigation. System functionality has been proven
in Challenge II of the MBZIRC 2020 competition. The Challenge required a ground robot to build
an L-shaped structure of colored bricks laid in a predefined pattern. Such a mission incorporates
several demanding subchallenges, spanning multiple branches of computer science, cybernetics, and
robotics. Moreover, all the subchallenges had to be performed flawlessly in rapid succession, in
order to complete the Challenge successfully. The extreme difficulty of the task was highlighted in
the MBZIRC 2020 finals, where our system was among the only two competitors (out of 32) that
managed to complete the task in autonomous mode.
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1. Introduction
In recent years mobile robotics has dramatically risen in popularity. Compact, yet high-fidelity
onboard sensors, complemented with powerful, embedded computers, have allowed machines to
comprehend their operational environment in real-time. The advent of deep learning, supported by
the available datasets, now enables deploying advanced machine perception and planning algorithms.
All these factors, combined, have allowed robots to handle increasingly complex tasks and opened
new possibilities for future applications and development. The combination of these advances in
hardware and software is visible throughout the world of robotics, with notable, rapid advances
over the last decade.

In the field of manufacturing and logistics, robots have seen rapid proliferation. Robotic ma-
nipulators are no longer built for specific tasks but have become more versatile and easy to
reconfigure (Coppola et al., 2014). Similarly, the growth in e-commerce has led to vast investments
in developing robots for warehouse environments, more specifically automated storage and retrieval
of products on demand (Bogue, 2016). Moreover, robots are gradually leaving the structured
environments of warehouses and assembly lines, and are now entering those of households and
offices (Hawes et al., 2017; Triebel et al., 2016). Semi-autonomous cars and intelligent vacuum
cleaners are now considered common.

However, such machines are still built for a single purpose only, and the vision of a versatile,
multi-purpose robotic assistant remains unrealized. Such an assistant must be able to navigate,
unaided, around cluttered and changing environments, and must be able to recognize, inspect and
manipulate common household and office items. In addition, systems capable of mobile manipulation
are inherently more complex, which affects their reliability and, subsequently, safety. Design and
implementation of a safe, reliable, and fast mobile manipulator require a tight coupling of control
between mobile base and manipulator since the navigation and manipulation capabilities are
contrary to each other: Good manipulation ability requires a large robotic arm with multiple
joints, which results in the need for a large mobile base. However, safe navigation and precise
position control of a bulky mobile base are difficult and precisely positioning the lower base affects
manipulation capabilities. Therefore, mobile manipulators deployed outside of the structured worlds
of assembly lines and warehouses are still somewhat clumsy to operate without human supervision.
This dilemma becomes even more prominent if the robots have to operate for extended periods of
time (Hawes et al., 2017; Kunze et al., 2018). Finally, the need for human operation or supervision
often makes the mobile manipulator economically unfeasible.

The issue of economical viability changes, if one imagines a supervised, multi-robot system,
where the human can assist remotely in difficult tasks, or take control in hazardous situations.
Such a system could be used for a variety of tasks where people might be exposed to unnecessary
danger, e.g., search and rescue in underground environments (Rouček et al., 2019; Petrlík et al.,
2020), clearing areas of toxic or radioactive debris (Amjadi et al., 2019; Nawaz et al., 2009), or tall
building construction and maintenance (Moon et al., 2013). However, multi-robot systems capable
of reliable mobile manipulation are even more complex and their design and implementation require
solving numerous engineering challenges. Nevertheless, preliminary versions of such systems have
been successfully deployed in field trials, such as during the Mohammed bin Zayed International
Robotics Challenge (MBZIRC) 2017 (Spurný et al., 2019; Schwarz et al., 2019).

In this paper we present a mobile manipulator1 operating within a heterogeneous, multi-robot
system and capable of collecting building blocks of various sizes, delivering them to a specified
location, and arranging them in a desired pattern. While the system comprises aerial as well as
ground robots, all capable of object manipulation, our paper focuses solely on the ground robot
that, unlike its flying partners, can carry several building bricks at once and arrange them in a
specific pattern. Nevertheless, having a multi-robot system deployed in a shared arena provided an
excellent opportunity for employing a cooperative approach. In the developed system, a special effort

1 Multimedia material: http://mrs.felk.cvut.cz/fr2020ugv
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was put into multi-vehicle cooperation in both air-air and air-ground robot pairs. The performance of
the system was evaluated in a series of experimental trials, culminating with the “Brick challenge”
of the MBZIRC 20202. This event aims to push the current boundaries of mobile robotics in a
set of demanding missions directly relevant to real-world applications, in this case, automating
construction operations.

1.1. Related work
Mobile manipulators are becoming an increasingly discussed topic in industrial automation. The
concept of a fourth industrial revolution, dubbed Industry 4.0, anticipates mass deployment of
complex cyber-physical systems, machine learning algorithms, and human-machine interaction (Lu,
2017; Lasi et al., 2014). Since many contemporary assembly lines are designed to serve a singular
purpose, customization of the production process is often costly and time-demanding. In the near
future mobile manipulators will become a vital part of highly reconfigurable assembly lines, smart
factories and workshops (Xu et al., 2018; Petrasch and Hentschke, 2016; Roblek et al., 2016; Davis
et al., 2012).

Another domain for mobile manipulator deployment is precision agriculture. Unlike industrial
applications, the outdoor environment is naturally less structured and the robots have to deal with
variable lighting and weather conditions (Duckett et al., 2018). The authors of (Bac et al., 2014)
reviewed over 50 mobile manipulators systems, which were intended to harvest high-value crops.
They concluded that none of the systems were commercialized mainly due to the lack of reliability
when deployed in real world conditions.

During the last 5 years a few authors have demonstrated that hardware and software designs that
address the perceptual difficulties outdoors (Kusumam et al., 2017; Ponnambalam et al., 2020; Binch
et al., 2020) can lead to systems capable of long-term deployments in agricultural scenarios (Pretto
et al., 2020). A recent report provides an overview on fruit harvesting robots, which have come to
the market over the last 5 years (Bogue, 2020), and concludes that the time of mobile manipulation
in agriculture is near. However, the report also indicates that the manipulators are designed for
specific fruits only and that the environment has to be tailored for the robots to operate reliably.

Using a mobile base dramatically expands the operation space of the manipulator, however, it also
imposes much stricter safety requirements, as the manipulator may no longer be contained within a
safety fence. To ensure a safe environment around the manipulator, additional sensors and control
algorithms have to be used. Rather than having a human worker avoid the workspace of the robot,
a smart robot will continuously adjust its workspace to avoid the human (Thoben et al., 2017).

Commercially available mobile manipulators include the KUKA KMR iiwa3, KUKA KMR
Quantec4, Robotnik RB-15 or the Fetch Robotics Mobile Manipulator (Wise et al., 2016). However,
at the time of writing this paper, industrial mobile manipulators remain predominantly a subject
of academic research.

In (Bischoff et al., 2011), a 5 DOF manipulator on a mobile platform with omnidirectional motion
capability is shown to navigate through a semi-structured environment, locate and pick up colored
objects. The dexterity of a mobile manipulator is analyzed by (Chen et al., 2018; Dömel et al.,
2017), who both consider the task of grasping objects from a shelf. Heavy payload transportation
is addressed in (Ohashi et al., 2016). In (Pavlichenko et al., 2018), the KMR iiwa is tasked with
fetching various equipment from a warehouse, while dynamically avoiding humans who occupy the
same area.

Given the topicality of mobile manipulation missions, they were included in two of the challenges
in MBZIRC 2017 and one in MBZIRC 2020. In particular, a ground robot scenario in MBZIRC

2 http://mbzirc.com
3 https://www.kuka.com/en-de/products/mobility/mobile-robots/kmr-iiwa
4 https://www.kuka.com/en-de/products/mobility/mobile-robots/kmr-quantec
5 https://robotnik.eu/products/mobile-manipulators/rb-1/
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2017 required a mobile manipulator to autonomously locate and close a valve. After identifying the
valve, the robot had to examine it and determine the size of a wrench tool needed to turn it, retrieve
the right wrench from a toolbox, and finally, use it to turn the valve. A detailed description of the
challenge is provided in (Schwarz et al., 2019).

The “Brick building” challenge can be imagined as a successor to the “Treasure hunt” challenge of
the first MBZIRC contest, which took place in 2017 in Abu Dhabi. In the “Treasure hunt”, a group
of Unmanned Aerial Vehicles (UAVs) had to locate and collect a set of circular disks and deliver
those to a specific location (Spurný et al., 2019; Baca et al., 2019; Loianno et al., 2018). Several
teams managed to score points by collecting and delivering at least one disk in 2017, therefore, the
difficulty of a mobile manipulation task was increased for MBZIRC 2020. This time the challenge
required simultaneous deployment of ground and aerial robots, and the objects had to be picked up
and placed with considerable precision.

1.2. Contribution
Here we present a complete, ground-based system for autonomously localizing, grasping, transport-
ing, and precisely placing magnetic objects. Although the primary objective of the system was to
compete in the Brick challenge of MBZIRC 2020, our design is highly modular and may be easily
adapted for other similar tasks.

The developed computer-vision algorithms provide fast and reliable feature detection using diverse
types of input data. We show how to modify the fast segmentation procedure (Krajník et al., 2014)
to reliably process both depth and RGB data to detect and localize both component bricks and
target building pattern, respectively.

Since the competition runs from dawn till dusk, special effort was put into making the algorithms
resilient to varying lighting conditions. We have built upon our previous experience from the Defense
Advanced Research Projects Agency (DARPA) Subterranean Challenge (Rouček et al., 2019), where
a team of robots autonomously explored an unknown area with reduced visibility. Through the use
of multiple perception principles, our design can locate, load, and transport bricks even in complete
darkness.

We have also tackled the entire task in a cooperative manner, with an approach utilizing the
unique aspects of both robot types. We exploit UAV’s speed and ability to provide an elevated,
multi-perspective view of the arena, and the Unmanned Ground Vehicle (UGV)’s high payload
capacity. By the means of multi-robot collaboration, each vehicle can directly benefit from the
others’ strengths.

The MBZIRC 2020 Brick challenge includes many subtasks, some of which are well-known and
studied problems in robotics. However, chaining these in rapid succession and ensuring a robust
performance outside laboratory conditions still poses a difficult challenge. To further emphasize the
difficulty, we point out that out of 19 teams participating in the Challenge, only two managed to score
points while operating their ground robots in autonomous mode. As the winners of the event, we
believe that sharing our experience will make a valuable contribution to the community. Moreover,
we decided to share the source codes of the system (Broughton et al., 2020) to facilitate the process
of new teams becoming a part of the MBZIRC community before its next round in 2022–2023.

2. Task description
The Challenge goal is to employ a team of robots, consisting of up to three UAVs and one UGV,
to build a multi-layer structure using colored bricks. While the available building material and
construction sites are divided for the two types of robots, they can benefit from sharing information
about the arena. This proved to be essential to achieve the contest goals within the specified time.
Therefore, we can perceive the Challenge as two loosely coupled tasks, which could be performed
independently in a shared arena. We will focus solely on the UGV task in the scope of this paper,
while the UAV system is described in (Baca et al., 2020).

Field Robotics, March, 2022 · 2:75–106
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Figure 1. Layout of the brick pickup area for the UGV, as visualized in the competition rules.
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Figure 2. An overview of the competition arena showing the four objects of interest. The brick array for the
UAVs is visible on the left, the UAV construction site in the background, the UGV brick array in the foreground,
and the UGV construction site on the right side of the photo. One of the pillars, which supports the protective
net, can be seen behind the UAV construction site.

The competition arena has a rectangular ground plan, approximately 50 m × 60 m in size. It
is enclosed in a protective net, which is suspended by four pillars located in the corners, reaching
a height of 20 m above the ground plane. The arena contains four distinct structures, which are
shown in Figure 2b. These include two arrays of stacked bricks and two areas for brick placement,
one for each robot type. In the context of the UGV task, the UAV-related structures are treated as
obstacles. Nevertheless, the ground robot is still required to detect and identify these.

The bricks in the UGV pickup area are arranged in a predefined pattern shown in Figure 1.
The layout of the pickup zone remains unchanged throughout the competition. The bricks consist
of various types of extruded polystyrene foam. Each brick is equipped with a white ferromagnetic
plate located on the top side, and all bricks have an identical cross-section of 0.2 m × 0.2 m. There
are four different classes of bricks, which vary in their properties, and also in the score awarded for
successful placement. The dimensions and scores for each brick class are summarized in Table 1.
The pickup area is divided into four sections corresponding to the four brick classes. The bricks are
predominantly stacked in two layers.

The placement area is a flat L-shaped surface covered in a yellow-magenta checkered pattern, as
shown in Figure 2c. Both pickup and placement zones may be placed at an arbitrary position in
the arena. The pickup zone for the UAVs consists of six narrow channels filled with one layer of
bricks. Finally, the placement area for the UAVs is an elevated platform, consisting of four 4 m long
segments arranged in a W-shaped pattern. The UAV placement area is shown in Figure 2a.

Before the Challenge starts, each team is given a uniquely generated sequence, which defines the
color sequence of the wall to be constructed. One segment of the L-shape is dedicated to the largest,
orange bricks. The remaining bricks are stacked on the other segment. Each layer of the wall consists

Field Robotics, March, 2022 · 2:75–106
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Table 1. A table of available construction material in the Challenge.
Color Length [m] Weight [kg] Score
Red 0.3 1.0 1
Green 0.6 1.0 2
Blue 1.2 1.5 3
Orange 1.8 2.0 4

of exactly 2 orange, 1 blue, 2 green, and 4 red bricks. Finally, the time to complete the Challenge
is limited to 30 minutes.

3. Platform description
The UGV platform selection was influenced by the Challenge rules, which limit the vehicle size to
1.7 m × 1.5 m × 2.0 m. The time constraints and arena dimensions also played a significant role in
hardware design and strategy selection. It was in our interest to develop a robust system, which is
not specifically tailored to one particular scenario. Instead, the developed system is highly modular
and may be easily adapted to a variety of projects. For this reason, we opted for mostly off-the-shelf
components, which have been used in our past projects (Petrlík et al., 2020; Rouček et al., 2019;
Majer et al., 2019; Spurný et al., 2019; Loianno et al., 2018), or will be used in follow-up research
in the near future.

Since the components used in the system are produced by various manufacturers, we rely heavily
on the Robot Operating System (ROS) (Quigley et al., 2009). This open-source software platform
provides hardware abstraction and serves as a middleware to interconnect individual components
into a single large system.

3.1. Mobile base
The Clearpath Robotics Husky A2006 was selected as the mobile base for our system. The Husky is
a rugged, wheeled robot, and a popular UGV platform for outdoor robotic applications and research.
An open-source ROS interface (Clearpath, 2015) allows for easy interconnection of the base with
other components, sensors, and modules. The Husky is well suited for cargo transportation, as it
can carry up to 75 kg of additional payload. The compact form factor of the robot (0.99 m × 0.67 m
× 0.39 m) provides enough margin to install additional components without exceeding the limits
of the competition. A slight drawback of this platform is its limited top speed at approximately
1 m/s. On the other hand, the motors offer exceptional torque, and the rugged construction allows
the robot to traverse difficult, uneven terrain.

To minimize the time spent by transitioning between the pickup and the placement area, the
robot was equipped with a custom-designed cargo bay, which can fit up to 7 bricks of red, green,
and blue color. This way, the UGV can load and transport an entire layer of the wall section in one
trip. The cargo bay is attached to the rear section of the robot as shown in Figure 3.

3.2. Manipulator arm
For the brick manipulation, we employ a manipulator arm by Kinova Robotics. A Gen3 Kinova7

arm with 7 degrees of freedom (DOF) was chosen. The arm offers a working envelope, which is
large enough to engulf all positions in the cargo bay, as well as all layers of bricks in the pickup
zone. The added redundancy of the over-actuated manipulator also ensures exceptional dexterity
of the arm. Thanks to these properties, the end effector can be oriented parallel to the ground at

6 https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
7 https://www.kinovarobotics.com/en/products/gen3-robot
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(a) Side view (b) Rear view

Figure 3. The complete mobile manipulator used during the competition, showing the Kinova robotic arm and
the cargo bay attached to the Husky mobile base.

(a) CAD design (b) 3D printed and mounted

Figure 4. Detail of the custom-designed magnetic gripper for the end effector. The gripper is fitted with two
electromagnets and Hall-effect sensors. A spring damper is installed inside the mounting bracket to provide force
compliance during the grasping process. The gripper is controlled by an Arduino Nano board, and the rigid section
also serves as a mounting point for the Realsense D435 camera.

all stages of the brick manipulation. This ensures equal distribution of load across the end–effector,
and minimizes the risk of dropping the grasped object.

With a weight of 7.2 kg, the mounting point has to be placed near the center of mass of the Husky,
to prevent tumbling when the arm is extended. Kinova also maintains an open-source Application
Programming Interface (API) and ROS drivers, provided together in the Kinova Kortex8 package.
The Kortex API offers an interface for control in both joint space and Cartesian space, and internally
prevents self-collisions. The arm is connected to the main onboard computer via Ethernet, and
control commands may be issued up to 1000 times per second.

3.3. Magnetic gripper
The arm is fitted with a custom-built end-effector featuring a magnetic gripper. The gripper, shown
in Figure 4, incorporates two YJ-40/20 solenoid electromagnets. We fitted each magnet with a
Hall-effect sensor that serves as a proximity detector for the ferromagnetic plates. Each magnet is
rated to operate at 12 V, and provides up to 25 kg of holding force. In our setup, the magnets are

8 https://github.com/Kinovarobotics/kortex
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overcharged by an input voltage of 24 V, which increases the holding force, but makes the gripper
prone to overheating. The body of the gripper is 3D printed from PET-G, which becomes malleable
at temperatures exceeding 100◦C. With increasing temperature, the electrical resistance of the
electromagnets also rises, and the holding force decreases as a result. Therefore, the gripper is only
powered on for short periods of time during brick manipulation, to balance out the effects of heating.

The power switching and sensor readout are performed by an Arduino Nano board, which is
connected to the main computer via USB. Based on our experience with the system, we have also
incorporated a redundant software safety switch for the gripper. The mechanism cuts the power
to the magnets if the Hall-effect sensors do not detect any nearby ferromagnetic object within 5
seconds of the magnets being powered on.

We have utilized our previous experiences with magnetic object grasping by aerial vehicles from
the MBZIRC 2017 (Spurný et al., 2019; Loianno et al., 2018), and incorporated a spring-damper
into the gripper body. The force-compliant design allows the gripper to retract by approximately 2
cm into the mounting socket. This feature mitigates the effect of communication delay within the
system and prevents damage to the manipulator or the brick.

The proximity of a ferromagnetic object is detected as a rapid change in the magnetic field mea-
sured by the Hall-effect sensor. During the rehearsals, the threshold value is calibrated specifically
for the competition bricks, as it depends on the material of the plate and its coating paint thickness.

We have gathered a lot of valuable insight on gripper design during our preparations, and also
during the contest itself. The force-compliance allowed us to avoid damage to the equipment caused
by communication delay between the gripper and the arm during the grasping phase. However, our
design only allows one-axis deformation, which requires the ferromagnetic plate and the magnets
to be aligned perfectly. Since the bricks could have been placed on an inclined surface, we have
implemented a workaround by making the outer shaft of the gripper wider than the retracting
element. This way, the inner core had enough margin for a lateral motion to compensate for the
angular misalignment.

Robustness may also be improved by fitting a piezoelectric force sensor directly into the gripper
shaft. The additional force feedback, to complement the torque sensors inside the arm, would
significantly improve contact and collision detection. Further improvements could be made by
measuring lateral forces acting upon the gripper, and by adding a temperature sensor to monitor
the status of the magnets.

3.4. Sensory equipment
The competition took place in an outdoor environment, and the rules permitted the use of Global
Navigation Satellite System (GNSS). The use of a more precise RTK/DGPS was also allowed but
resulted in a score penalty. Conventional GNSS methods, however, tend to drift in the order of meters
without corrections provided by an additional ground station. Moreover, the accuracy provided by a
conventional GNSS system is not sufficient in the critical stages of the challenge. To ensure a robust,
high-precision navigation, we have opted for a local positioning system based around the onboard
sensors.

The UGV is equipped with a Velodyne Puck VLP-16 Light Detection And Ranging (LiDAR).
The sensor consists of a rotating infrared laser rangefinder, which provides a 360 degrees horizontal
field of view (FOV) and a resolution of up to 0.1◦. The vertical FOV spans 30 degrees and is divided
into 16 layers. The sensor has an advertised maximal range of 100 m. In practice, we have found
the maximum reliable range to be just under half the advertised value, which was still sufficient for
the competition arena. Measurements are streamed to the onboard computer via an Ethernet link
at a rate of 10 Hz. The output data is represented as a 3D point cloud.

The Kinova Gen3 manipulator is equipped with an Intel Realsense D410 stereo camera integrated
into the wrist. This camera is connected to the internal controller of the arm, which is connected to
the main computer via an Ethernet link. During the development, we have experienced a fluctuating
delay in the image output. The use of the wrist camera was intended in a direct feedback loop to align

Field Robotics, March, 2022 · 2:75–106



Towards new frontiers in mobile manipulation: Team CTU-UPenn-NYU at MBZIRC 2020 · 83

the end effector with the center of a brick. However, image delay often spiked into several seconds,
which rendered the image stream unusable for such a task. Therefore, an additional Intel Realsense
D435 stereo camera was attached to the gripper and connected directly to the main computer. The
D435 provides an RGB image at a resolution of up to 1920 × 1080 pixels, and a depth image of up
to 1280 × 720 pixels at distances ranging from 0.1 to 10 m. The depth sensor uses a global shutter,
which prevents image distortions induced by the motion of the camera or the scene.

Prior to the competition, a high-resolution 3D scan of the arena and its surroundings was taken
by a Leica BLK360 3D scanner. The point cloud produced by the 3D scanner is used to augment
the scan matching of the LiDAR measurements, to improve localization of the robot within the
arena.

4. Control architecture
In this section we summarize the control architecture of the mobile manipulation system. As
mentioned before, the system is capable of completing the task described in Section 2 in autonomous
mode. However, the extent of autonomy can vary widely between different systems. Let us first
discuss the task complexity, and anchor the degree of autonomy required for successful wall
placement.

The area of operation is assumed to be a semi-structured environment, consisting of a large,
uneven ground plane and very sparsely distributed obstacles. Throughout the operation, the area
is unpopulated by human workers. Besides the UGV, the only other moving entities are the UAVs,
which operate outside the reach of the ground robot for most of the time. Nevertheless, the
environment cannot be assumed entirely static, as the brick stacks and the build zones are relocated
by human workers in between the trials. Since humans cannot achieve the same level of precision
robots do, it is assumed that the layout of the stacked bricks will deviate from the expected layout.

To deal with the challenges of changing arena configuration, the robot is required to explore the
arena and search for the objects of interest. However, even with the use of high-end sensors and
advanced processing techniques, the object detection range of the robot is limited, and so is the
top speed of the mobile base. During the 30 minute time window, a full exploration of the arena
becomes nearly impossible, especially when the time required for brick manipulation is also factored
in. On the other hand, navigational waypoints cannot be prepared in advance without knowing the
exact arena configuration. The waypoints may be set manually before the task is started, however,
this action has to be performed without entering the arena. This method alone lacks the accuracy
required for the object grasping to be successful.

In this work, we aim to strike the balance between an exhaustive full exploration, and the following
of a predefined path. The concept of “guided autonomy” (Gray et al., 2018; Dellin et al., 2016; Hebert
et al., 2015) assumes the robot to be capable of autonomous operation and reaction to sparse inputs
issued by an operator. This concept is suitable for robotic operations, where direct human presence
is not possible and communication with the robot is costly or unreliable, but the operator still has
a crude knowledge of the environment. Similar applications include the inspection of a damaged
nuclear power plant (Bausys et al., 2019; Notheis et al., 2012), or space exploration by unmanned
rovers (Francis et al., 2017; Starek et al., 2016).

The necessary computing power is provided by a primary onboard computer, the Intel NUCi7
running Ubuntu Linux 18.04 with ROS version Melodic. The computer handles all sensor data
processing, state estimation, and a majority of the control logic.

As the overall task comprises multiple complex subtasks, we have implemented a hierarchical
control strategy. The strategy divides the system into 4 layers. Each layer of control has direct
access to the services provided by the lower layer, and the action results are propagated to the
upper layer. The structure is illustrated in Figure 5.

At the bottom, we have the internal controller of the Kinova manipulator commanded via
the Kortex API. The ROS drivers for the Realsense camera and the Velodyne LiDAR are also
located at this layer. Finally, this layer also handles the sensor data preprocessing, such as image
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Sensoric Data Processing
Kinova Kortex API

Hardware to ROS Interfaces

Mobile Base Controller
Kortex Control Manager

Inventory Manager

Exploration
Brick Pickup

Brick Placement

Mission
Controller

Figure 5. An illustration of the control hierarchy employed by the onboard computer of the UGV. Each subsystem
is able to directly access the services provided by the lower layer subsystems and propagate results to the upper
layer.

histogram normalization, noise filtering, and segmentation. The preprocessing is based on fast,
efficient algorithms (Krajník et al., 2018; Krajník et al., 2014), which are application-independent
and do not rely on the rest of the system.

The second-lowest layer comprises wrappers and abstractions for motion control. The Husky
mobile base is controlled via the ROS move_base9 navigation stack, and the Adaptive Monte Carlo
Localization (AMCL) probabilistic localization system10. The original code has been adapted for
operation in larger areas, such as the MBZIRC 2020 arena. This layer also includes a custom
wrapper for the manipulator control interface, the Kortex Control Manager (KCM). The contents
of the cargo bay are supervised by the Inventory manager, which also processes the construction
blueprint provided at the beginning of the challenge.

The third layer consists of three state machines, which handle the long-duration phases of the
mission. The arena exploration is focused on locating the stacked bricks and the placement area.
During the exploration phase, the robot also builds a symbolic map of the arena and avoids obstacles.
The brick pickup phase deals with moving close to the brick stacks, and fully loading the cargo bay
with four red, two green, and one blue brick. The brick placement phase handles the alignment of
the robot with the checkered pattern and deploying the bricks from the cargo bay in the order of
the desired blueprint.

Finally, the Mission Controller ensures valid transitions in between the individual phases. The
main loop of the Mission Controller is shown in Figure 6. The lower level controllers detect and
attempt to resolve minor failures, such as an unsuccessful brick grasping attempt. Severe failures are
propagated to the Mission Controller, and cannot be resolved by the integrated recovery behavior.
In such a case, a manual reset is requested. Severe issues are typically of mechanical nature and
require human intervention before continuing with the mission.

4.1. Arm manipulation
This section summarizes the operation of the Kortex Control Manager, a custom control layer
built upon the Kinova Kortex API, which mediates communication between the arm and the main
computer. In addition to self-collisions, which are avoided by the internal logic of the arm, the
KCM also ensures collision avoidance with the structure of the Husky and the cargo bay. Payload

9 http://wiki.ros.org/move_base
10 http://wiki.ros.org/amcl
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Figure 6. The core loop managed by the Mission Controller state machine. This controller represents the highest
level of the system, and handles the transitions between the three main stages of the operation: Exploration,
Inventory filling and Brick deployment. The tight cooperation of the movebase and the manipulator arm is
highlighted by color coding. The colors represent, how much of the action is performed by the movebase and the
manipulator arm.

awareness is also implemented, and additional avoidance maneuvers are performed if a brick is held
by the gripper, or present in the cargo bay.

Two modes of operation are possible with the KCM – position control and velocity control. The
KCM utilizes the output of the joint sensors, which provide the current joint position, velocity, and
torque at a rate of 100 Hz. In both modes, the torque data is continuously analyzed, and the motion
is terminated after the torque difference exceeds a given threshold. The torque feedback serves as
the primary safety feature to prevent damage in case of unexpected collisions with obstacles.

The position control mode is used to move the arm into the desired position in joint space. In this
mode, the trajectory from the current arm position to a goal position is interpolated by the MoveIt!
planning interface (Chitta et al., 2012). The interpolated trajectory is sampled with 0.001 second
time step, and the individual samples are sent as joint commands to the actuators via the Kortex
API. The dense sampling allows the controller to terminate the motion abruptly, in case a collision
is detected.

In the velocity control mode, the joint commands are used directly without interpolation. The
commands are sent to the arm via the Kortex API at a rate of 100 Hz. Position feedback is used to
constrain the motion inside the safety area. This prevents collisions with the Husky and the bricks
in the cargo bay.

The core of KCM consists of a bank of short pre-programmed actions. Some of the actions are as
simple as moving to a predefined position, while others utilize the Realsense camera or the magnetic
gripper feedback to successfully align and connect with a brick. The actions are provided to the
higher-level controllers as services. The internal state machine of the KCM ensures, that no more
than one action is executed at the same time. The continuous monitoring of joint sensor data is
used to detect anomalies, such as collisions with unexpected obstacles or missing bricks in the cargo
bay. After an issue is detected, the KCM automatically performs a series of recovery actions to
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Figure 7. Reachability analysis for the lowest layer of bricks placed directly onto the ground plane. All dimensions
are shown in millimeters unless stated otherwise. Since the gripper is required to be oriented perpendicular to the
brick, only the reach of the wrist joint is considered. The area around the mobile base is declared a no-go zone
for the wrist motion, to avoid collisions with the robot body. The no-go zone has to account for the brick size,
since the grasping targets the brick center. The robot also requires a margin for turning during the navigation
phase, which further limits the reachable area. The remaining part of the working envelope is highlighted in red.
This highlighted area represents the reach of the wrist for picking up a brick off the ground plane. The limited
reach generates a strict requirement on the precision of navigation for the mobile base.
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Figure 8. The internal structure of the Kortex Control Manager, a custom wrapper for the Kortex API. The
Action server is provided with a bank of short, pre-programmed actions, which are specific to the brick grasping
task. These actions range from assuming a predefined position, to launching a camera feedback control and
aligning the end effector with a brick.

regain full control of the arm. If a brick is found missing or obstructed in the cargo bay, the issue
is propagated to the higher levels of control, and a new strategy is selected. A block diagram of the
KCM operation is shown in Figure 8.

Payload awareness is also implemented into the KCM. However, mounting a manipulator arm on
top of a mobile robot introduces additional limitations. The problem of a reduced working envelope
is illustrated in Figure 7. A significant portion of the area reachable by the manipulator is now
obstructed by the frame of the robot and has to be declared a no-go zone. The zone must also
be inflated by at least half a brick size, to account for bricks grasped by their center. Additional
inflation is necessary to provide the mobile base clearance for safe turning without colliding with the
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bricks since the robot uses skid-steering. Finally, robotic arms typically struggle to reach positions
below their base and lifting the base of the arm by the height of the mobile robot only makes the
issue more pronounced.

In our case, we have employed a dexterous over-actuated manipulator with 7 DOF. We have also
mounted the arm as close to the side of the robot as possible, without disrupting the stability of the
mobile base. Despite our efforts, the lowest layer of bricks placed directly on the ground remains
very challenging to pick up, as the reachable area at this height only has 0.34 m in diameter. This
limitation needs to be compensated by the mobile base, which is required to approach the target
within ±0.17 m.

4.2. Navigation and localization
The navigation stack used on the Husky is based on the ROS navigation packages implemented by
the STRANDS projects (Hawes et al., 2017). The primary source of information for navigation is
the 3D LiDAR sensor, in addition to the estimated wheel odometry. The incoming LiDAR data is
processed to calculate each point’s height relative to the robot. This data is then split into two hori-
zontal point cloud slices. The first of these slices, with points low to the ground, is used for obstacle
avoidance, while the other, concentrating on objects further from the ground, is used for localization.

The system uses a pre-processed high-resolution 3D point cloud of the arena, as mentioned earlier.
A horizontal slice from this point cloud, which corresponds to the upper slice of the LiDAR data, is
used to generate a map. The limits for the LiDAR slice were determined during the rehearsals for
the competition by searching for the optimum in terms of localization reliability. This height level
was set to 1.5 m above the sensor by empirical evaluation.

The robot’s pose in the map is estimated from the LiDAR slice and wheel odometry via the
AMCL. We found out that the default ROS AMCL module is quite sensitive to odometry errors,
even when factoring in the corresponding variables for noise. Therefore, some effort was taken to
correctly calibrate the odometry information for the overall robot structure, taking into account
the asymmetric center of gravity caused by the positioning of the arm. Additionally, the odometry
was especially sensitive to the dynamically changing payload in the cargo bay, which further offset
the center of gravity, and disrupted the localization. We have performed an exhaustive tuning of
the parameters using data collected during the preliminary tests and the competition rehearsals.
Eventually, the parameters were tuned so that the localization remained very stable, even when
driving in the center of the arena, far from reliable navigational reference points.

Path planning for the Husky is handled by the move_base ROS package. The planning parameters
were calibrated to allow driving past obstacles, without getting too close. Dynamic maps are used
in conjunction with the lower slice of the LiDAR point cloud to avoid potential collisions occurring
from sudden events, such as the UAVs accidentally dropping bricks, or performing an emergency
landing in the UGV’s path. This slice of the point cloud includes points from 0.1 m above the
ground up to the height of the LiDAR sensor. In this range, the UGV could safely and reliably
avoid bricks on the ground while navigating. Points below the 0.1 m threshold are assumed to be
located on uneven ground. The threshold provides a balance between detecting bricks on the ground,
and not planning paths around false-positive detections caused by the non-uniform ground plane in
the arena, or by the sensor noise.

Minor adaptations were made to the code, so that the precision of positioning may be changed
on the fly. This feature significantly reduces the mission time, as the robot is often able to reach
its destination within a reasonable tolerance, and then expends much valuable time attempting to
get slightly closer to its designated target. This is especially pronounced if the robot is displaced
laterally from its destination. In such a case it must perform a costly reverse, turn, and drive in the
style of parallel parking. Therefore, it is important to evaluate whether such a maneuver is really
necessary.

During the exploration phase, assuming good localization, it is not necessary to reach every
target with a high degree of precision, and the emphasis is given to covering large distances as
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Figure 9. An exploration strategy generated for the MBZIRC 2020 competition arena. The black dots represent
a pre-processed high-resolution 3D scan, which is used to augment the localization provided by the AMCL module.
The yellow line marks a no-go zone the robot must not leave. Given the maximal range at which a checkered
pattern can be reliably detected by the RGB camera (green circles), the system generated a set of 4×5 waypoints
(purple points) that the robot must visit to ensure full area coverage. Note that for full coverage using circles,
there is a great deal of overlap. This is somewhat for redundancy, however, in a time-critical challenge, great
gains could have been made by switching to a rolling exploration strategy, rather than point-by-point.

quickly as possible. Therefore, the system detects the attempts at the “parallel parking” maneuver
and prevents them by marking the current goal as reached. On the other hand, during the brick stack
approach and pickup, the position tolerances are set very tightly to reach the target as accurately
as possible. The motivation for the high degree of precision during the brick approach was explained
in Section 4.1.

The exploration strategy is visualized in Figure 9. We input the width and height of the arena, as
well as the maximum perception distance, and the exploration strategy is computed. A no-go zone
is delineated around the perimeter, and a series of waypoints is generated. All the waypoints must
be visited by the UGV to ensure the entire arena is fully explored. The exploration phase may be
interrupted early if the objects of interest are found beforehand.

4.3. Inventory and Planning
While the robot’s main control state machine is responsible for moving the robot from the pickup
location to the deployment location and back again, we have implemented an additional module,
which is responsible for the robot’s inventory, planning, and strategy selection. The module tracks
the bricks that the robot believes it is currently carrying, and also their place in the cargo bay.
Other nodes can query the inventory module to see which bricks the robot currently has, which it
needs to pick up, and which bricks can be accessed immediately.

When the robot reaches the stacked bricks, the inventory module determines which brick type
should be picked up. The node processes the desired blueprint provided before each trial and
constructs a dependency graph of the bricks. The module is aware that certain bricks need not
be picked up if they cannot be placed at the building site. The dependency graph also takes into
account the layout of the cargo bay. Doing so, it is able to determine that a certain brick may be
picked up if and only if the robot first picks up another type of brick beforehand.

This module also allowed us to prepare multiple strategies for the competition. The competition
rules heavily penalized teams for failing to place at least one brick. We opted for a strategy of
initially going for a single brick and getting it placed as soon as possible, and then returning to pick
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up a full payload of bricks. Internally, this was done by simply restricting the inventory manager to
only deem a single brick placeable at the building site initially.

Once the robot reaches the building site, it can poll the inventory specifically for which bricks
are currently accessible by the arm, and at which position in the wall they should be placed at. The
module then returns an array of instructions, for example, saying that a red brick stacked two levels
high on the right side of the cargo bay is accessible, and can be placed on the second row of the wall
at a certain position. The deployment position is determined from the blueprint as an offset from
the right-hand side of the construction site.

The inventory manager allowed us to easily switch build strategies during the competition, but
it was also very useful for debugging the system during the development. Furthermore, if the robot
required a manual reset, this module would allow us to quickly feed in the current state of the world to
the robot, e.g. a partially constructed wall. During the competition, most of the features of the mod-
ule were not used due to time constraints. Nevertheless, the flexibility of the module contributed sig-
nificantly to the development process and was useful for setting the robot into various test scenarios.

4.4. Brick stack detection (far)
The range of the Velodyne VLP-16 (up to 100 m) is utilized for the detection of the stacked bricks
at a large distance. The LiDAR has a vertical FOV of 30◦ divided into 16 equally spaced linear
scans.

Firstly, we estimate the maximal brick detection distance. To distinguish the brick from a ground
plane or another obstacle, at least two scan layers are required to hit the brick. We assume an
idealized scenario shown in Figure 10, with two rays hitting the brick side at the same angle. The
intersection points and the sensor center form an isosceles triangle. This assumption simplifies the
computation while still providing a fairly accurate approximation of the detection distance. From
this assumption, the minimal number of rays hitting the brick can be computed as:

N =
arccos

(
1− a2

2b2

)
α

, (1)

where a is the height of the target object, b is the ray length, α is the angular pitch of individual
rays. The distance d between the brick and the sensor is then computed as:

d =
a
4

tan
(
α
2

) . (2)

For a single brick with a height of 0.2 m, at least two rays are guaranteed to hit the brick, if the
UGV is within a 3.055 m radius. A priori knowledge about the layout of the brick stacks can be
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Figure 10. Approximation of maximal detection range is based on the vertical resolution of the LiDAR sensor.
The brick cross-section is represented by a red square with a side length a = 0.2 m. The sensor is located at
point S and b1 = b2 = b represent two neighboring rays. The angle α = 1.875◦ is computed by dividing the
horizontal FOV by the ray count. The distance d serves as an approximation of the maximal detection range. At
larger distances, the brick may be missed by both rays.
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Figure 11. Pipeline for the brick stack detection from LiDAR data. The process outputs an estimated position
of the brick pickup area in the map, which is passed into the exploration node as a navigation goal.

leveraged as well. All types of bricks are initially stacked in at least two layers. This increases the
total height of the structure to 0.4 m and doubles the detection radius to 6.11 m. To achieve full
coverage of the arena, a simple path over equally spaced waypoints would be generated, as shown
before in Figure 9. However, for an arena of approximately 50 m × 60 m in size, such an endeavor
would consume a significant portion of the limited time budget.

The idea of using an advanced classification method, such as a neural network, was scrapped
during the development. Such classifiers, albeit very powerful, were deemed unnecessarily compli-
cated for the detection of features, which appear as line segments in the LiDAR data. Instead,
simpler methods based on line extraction are used. The brick stack detection pipeline is illustrated
in Figure 11. The point cloud provided by the LiDAR is initially segmented using the Iterative End
Point Fit (IEPF) algorithm (Ramer, 1972). Since the size of all brick classes is fixed and known in
advance, only segments of a proper length are considered brick candidates.

This method alone would be sufficient and easily applicable under laboratory conditions.
However, in the real world with an uneven ground plane, the algorithm tends to produce false-
positive candidates. To address this issue, we have applied an unsupervised learning technique,
the Expectation-maximization (EM) algorithm (Dempster et al., 1977), to filter out the erroneous
classifications, and estimate the position and orientation of the brick pickup area.

We assume the density of brick candidates to be higher at the correct stack position. Moreover,
the individual piles of colored bricks are arranged in a predefined order along a straight line, so
searching for a sequence of multiple brick classes will dramatically improve the false-positive filtering.
To leverage the spatial distribution of the bricks known a priori, the entire stack is represented as
a Gaussian mixture model:

P (~xm) ∼ N (~xm, ~µ+ km~v, Σm),∀m ∈ {0, 1, 2, 3} , (3)

where m is the brick class index, N is the Gaussian distribution, ~µ is the mean of the model,
Σm is the covariance matrix of a brick class, km is the scalar multiplier unique for each class, and
~v = (cosφ, sinφ)T is a direction vector representing orientation.

The model provides the most likely estimate of parameters ~µ and φ, which represent the positions
and orientations of the brick piles, respectively. Since the brick classes are clearly separated into
individual piles, the model contains four distinct peaks, which correspond with the centers of the
individual colored brick piles, as shown in Figure 12. The measurements ~xm for the layout detection
are clusters obtained from the symbolic map.

Since the brick candidates are already generated in the relative coordinate frame of the UGV,
the position of the brick stack may be directly projected to the map as well. The mean of the
model is found via the EM algorithm and directly represents the center of each colored brick pile.
Additionally, the orientation of the stack is also estimated by the EM algorithm. This allows the
robot to fully define the pose of the brick stack within the navigational map. The map is being
continuously generated throughout the UGV’s operation, and the model is continuously updated
using new data.
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Figure 12. The probability density of the model used by the brick stack classifier. Exploiting the a priori
knowledge of the brick stacks layout, false-positive classifications can be filtered out, which significantly improves
detection quality and robustness.

4.5. Brick stack approach
The exploration phase ends with the robot roughly 4 meters away from the red brick pile. For the
stack approach, much stricter precision parameters are uploaded to the navigation node. Due to the
mechanical limits of the system, which were mentioned in Section 4.1, the maximum position error
allowed for the move base is ±0.17 m. The brick pickup phase is controlled by a state machine,
which is illustrated in Figure 13.

The approach is initiated by aligning the heading of the robot with the major axis of the brick
stack. The axis of the brick stack is estimated from the LiDAR data. We once again utilize the a
priori knowledge of the brick stack layout, and only take the slice of the point cloud, which fits
the expected height of the bricks, and run a line-fitting algorithm based on the Random Sampling
Consensus (RANSAC) method (Fischler and Bolles, 1981) on the point cloud slice.

Once the robot is aligned with the bricks, the arm is extended to the side in such a way, that the
wrist camera points directly towards the ground plane. In the initial position, the distance between
the camera and the ground plane is nearly 1 m. With a 86◦ FOV depth sensor, even a blue brick
can fully fit into the image frame, if the arm is positioned above the brick’s center.

Using the depth image stream, the mobile base then attempts to park next to one specific brick,
so that the brick is located in the reachable zone of the arm. The target brick type is determined by
the inventory manager based on the current world state and the construction blueprint. If multiple
bricks are visible by the camera at the same time, the robot will always target the rightmost visible
brick, as long as its type matches the demand. This behavior is illustrated in Figure 14.

After the alignment is completed, the arm attempts to grasp the brick and place it into the cargo
bay. The state machine integrates multiple levels of fallback behavior, should any of the pickup
stages fail. The pickup process is repeated until the inventory manager reports a sufficient number
of bricks in the cargo bay. Afterward, the arm is used to secure the loaded bricks inside the cargo
hold, and the robot returns to the exploration phase.

4.6. Brick detection, grasping and loading
The brick detection method is based on a library for fast segmentation presented in (Krajník
et al., 2014), which was also successfully used in the “Treasure hunt” scenario of the MBZIRC
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Figure 13. Diagram of the brick pickup procedure. The process is initiated after the exploration phase had
finished, and the brick stack was located. The operation is controlled by a state machine running on the onboard
computer. The entire system is in motion for the highlighted group of processes. The rest of the operations only
uses the Kinova arm. Operations, which are handled by separate dedicated systems, and have been simplified for
this illustration, are represented by dashed lines.

2017 challenge. However, the brick detection is easier compared to MBZIRC 2017, because the
images do not suffer from vibrations induced by propellers, and the approximate position of the
camera above ground was available all the time. Moreover, the robot was equipped with an RGBD
camera, which provided stable depth information in direct sunlight as well as at night. Therefore,
we decided that unlike in 2017, where the objects were detected based on their color, depth images
will be used as the primary means of brick detection, as shown in Figure 14.

Using the known position of the end-effector, which is pointed to the ground during the brick
pickup, we calculate the distance from the camera to the ground plane. Then, we set a threshold
that rejects all data lower than the center of the brick to be grasped, i.e. remove all depth pixels
closer than 0.1 m to the assumed ground level. After that, we initiate a flood-fill algorithm, described
in (Krajník et al., 2014) and quickly obtain information about the detected segments sizes, centers,
eccentricities, and distances from the camera.
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(a) RGB image (for comparison
only)

(b) Raw depth image (c) Segmentation and feature
detection

Figure 14. Visual servoing by the RGBD camera mounted to the end effector. The RGB image is only shown for
comparison. The brick detection is performed in the depth domain, as it is more resilient to object illumination.
The gaps between the stacked bricks are small enough for the depth camera to capture neighboring bricks as well.
The alignment algorithm will prioritize the rightmost visible brick. The current alignment target is highlighted in
yellow. The depth image offers a considerably wider field of view than the RGB sensor. Note the robot wheels at
the bottom of the depth image.

The method also provides a set of pixels lying on the segment’s edge. The case where none of
these pixels lie at the edge of the image indicates that a full brick is visible by the camera. As
mentioned before, the depth camera should be able to capture at least one full brick from the initial
position, after the mobile base is finished with the alignment maneuvers. Once a brick is fully visible,
we attempt to determine its type using the positions of the segment corners.

We search the brick boundary pixels for one with the highest distance from the segment center –
this is one of the segment corners, which we denote as c0. After that, we search for a pixel c1 with the
highest distance to c0. The third corner c2 is found as a pixel with maximal distance from both c0
and c1. The final corner is found as the pixel with the maximal sum of distances from c0, c1 and c2.

Using the image coordinates of the segment corners, the algorithm then determines the width
and height of the segment. We use the ratio between width and height of the segment as the main
classification property. If the segment aspect ratio corresponds to one of the brick classes, its corners
are transformed from pixel coordinates into 3D, and the actual size of the brick is determined.
Segments, which do not satisfy the conditions for any of the brick classes, are discarded. Using only
the geometric properties of the segments allows us to skip any color information processing, which
would require color calibration for the current lighting conditions.

If the brick type matches the one required by the inventory manager, the position of the brick
center is transformed to the coordinate system of the gripper. In the case that the brick center is
out of reach of the manipulator, the mobile base itself starts to move forward and backward, while
performing small turns to adjust the grasping distance. Once the brick center is directly below the
gripper center (with ±8 cm tolerance), we stop the base alignment and start aligning the arm itself.

As soon as the gripper is directly above the brick, we start descending the arm, while positioning
it according to the information provided by the brick detection method. Once the brick becomes so
close that it does not fit the camera FOV, the magnetic gripper is powered on and the arm descends
straight down. As soon as the gripper indicates that the brick is attached to its magnet, the arm
starts to move upward, lifting the brick.

Once the brick is lifted, we query the inventory manager for a slot in the cargo bay, where the brick
should be stored. The brick is then stored by a series of pre-defined movements and the magnetic
gripper is powered off. The inventory manager is informed about the outcome of the storage action
and it either requests to pick up another brick or depart for the building area.

4.7. Building pattern detection
The building pattern is a flat object laid on the ground plane, which makes it impossible to detect
by the LiDAR scan. Therefore, a different approach has to be used. We opted to use the RGB
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stream of the Intel Realsense camera, which is mounted to the wrist of the manipulator. This way,
the RGB images can be taken from a variety of positions, some of them providing high detection
range and some of them ensuring high accuracy.

4.7.1. Pattern segmentation
The marker indicating the building area is a high-contrast violet-yellow checkered pattern, see
Figure 2c. To detect it, we use a fast segmentation method inspired by (Krajník et al., 2014), which
was successfully deployed during the MBZIRC 2017 contest (Štěpán et al., 2019). The segmentation
algorithm was tailored to find only one color of checkerboard squares and treat the other squares
as a background.

Our method uses a 3D RGB look-up grid to classify the image pixels as background, unknown, or
object. The method is efficient and versatile because it can implement any pixel-wise classification
algorithm in constant time. This is achieved by pre-computing the RGB look-up grid during a
calibration step. In our case, the grid was initialized using a Gaussian mixture to model the searched
color in the hue-saturation-value color space. The Gaussian mixture model is specified using a GUI,
which allows the user to select areas of the image belonging to the desired object and observe the
segmentation results on the fly.

The method uses the RGB grid to consecutively examine if the image pixels belong to the searched
object. Whenever a pixel is classified positively, a flood-fill algorithm is applied to quickly extract
the segment the pixel lies in. However, running a simple flood-fill algorithm would extract each of the
checkerboard squares as a separate segment. That would require complicated and potentially faulty
post-processing steps to merge the detected segments into one. To avoid such issues, we modified
the flood-fill method to search through a larger neighborhood of pixels identified as corners.

We exploit the fact that the flood-fill segmentation, presented in (Štěpán et al., 2019) naturally
obtains the information about the number of pixels of the segment color surrounding each pixel of
the segment. Thus, once the flood-fill method reports that a complete segment was found, we select
all pixels with less than two neighbors (these pixels are at the corners of the segment) and search for
another segment pixels within 5-pixel distance. If such a pixel is found, the flood-fill segmentation
continues from its position. This technique allows to efficiently find and count nearby segments of
the same color even if they do not form a contiguous area. This way, we obtain the count, size,
positions, and color of half of the squares on the checkerboard pattern. By comparing these values
to the a priori known pattern, we can easily filter out false-positive detections. The segmentation
approach is capable of detecting the pattern at varying distances and from various viewpoints, given
that the RGB lookup table is properly initialized.

4.7.2. Building pattern search
After storing the bricks in the cargo bay, the robot resumes exploration of the field. First, it generates
a set of waypoints to visit, see Figure 9. Then, it solves a traditional Traveling Salesman Problem
(TSP) to plan its route over these points. Upon reaching each point, the robot would extend its
arm as high as possible and then sweeps horizontally with the camera in an attempt to detect the
building pattern, see Figure 15a. This method works reliably up to 10 m from the robot.

Once a pattern is detected, the robot folds its arm to look 0.5–2.5 m in front of it, as shown
in Figure 15b. The robot then starts to move towards the pattern. After reaching the pattern, the
arm is extended to the side, and the robot uses visual servoing to align itself with the pattern.
This procedure is very similar to the alignment with the brick stack. The robot performs a series of
“parallel parking” maneuvers to align its heading with the major axis of the pattern. Pointing the
camera to the ground, the robot then drives along the checkers, until an edge of the pattern appears
in the camera view.

4.8. Brick deployment
The brick deployment is controlled by a state machine and is very similar to the brick pickup
procedure introduced in Section 4.5. The robot initially aligns itself with one section of the checkered
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(a) Searching for the build pattern by fully extending
the arm.

(b) Arm is folded and camera pointed forward while
driving.

Figure 15. During the exploration phase, the robot extends the arm and rotates the wrist joint to scan the
surroundings with an RGB camera. With the arm fully extended, the system also has a higher center of gravity,
rendering it unstable. Therefore, the robot has to stop moving before each scanning action. While driving, the
arm is folded so that the camera points to the ground in front of the robot.

pattern and moves to the edge of the pattern. Afterward, the inventory manager is polled for the next
brick to be placed down. The inventory manager provides the robot with a placement coordinate
relative to the pattern edge. Moreover, it informs the arm about the coordinates of the brick to
be placed in the robot’s cargo bay. The robot drives to the provided coordinates while picking up
the brick from its cargo bay. It then unloads the brick by following a series of pre-defined loading
actions in reverse. After releasing the brick onto the pattern, the inventory manager is queried for
the next location and the next brick to be placed.

A gap of 0.1 m is left in between individual bricks to prevent damage in case of minor
misalignment. Even with this offset, all bricks will still be fully placed onto the pattern.

4.9. Speeding up exploration
The full exploration of the arena by the onboard RGB camera alone is a time-consuming activity.
Since the UAVs (Baca et al., 2020) were deployed in the arena simultaneously with the UGV, the
option of multi-robot cooperation was also explored. In particular, mutual communication between
the robots was enabled via a 5 GHz Wi-Fi network, which was provided by the contest organizers.
We have employed the nimbro_network (Schwarz et al., 2017; Schwarz, 2020), a system allowing
message passing between multiple independent ROS systems within the same network.

One of the UAVs was initially tasked with quickly flying over the entire arena at a height of
4.5 m in a sweeping pattern, and creating a map of all objects of interest using its onboard sensors.
One of the sensors is a down-facing Intel Realsense D435, which matched the RGBD camera used
by the UGV. Since the drones could run the pattern detection described in the previous section
on their onboard computers, they could provide the robot with an approximate position of the
searched pattern. This position would then be used in the TSP method as the initial location of the
exploration.

5. Experimental evaluation
5.1. Early development
Early experimental evaluation of the system took place at the tennis courts of the Abu Dhabi
Campus of New York University, shown in Figure 16. Here, the system was able to repeatedly locate
and load the bricks, move to the approximate position of the building pattern, align to it and place
the bricks in the specified order. The accuracy of the brick picking and delivery was around ±3 cm,
and the success rate of loading seven bricks, i.e. the full stack needed to build one level of the wall,
was around 75%. In the remaining 25% of cases, the robot failed to load some of the bricks, which
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Figure 16. The tennis courts at the Abu Dhabi Campus of New York University were used for experimental
evaluation of the system. In here, we were able to repeatedly pick up and place an entire layer of the brick wall,
and perform autonomous exploration of an area comparable in size with the competition venue.
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Figure 17. Approximate duration of the individual sub-processes as observed during the early experiments at the
NYUAD campus. The 30-minute time limit of the competition is marked by a dashed red line. Using the guided
autonomy approach, the system was capable of finishing the task with a full set of 7 bricks (4 red, 2 green, 1
blue) within the time limit.

lead to interrupting the loading procedure and heading for the building area, where it deployed the
bricks it had in the cargo bay.

We also tested a fully uninformed scenario, in which the robot could not detect the objects of
interest from its starting position and the exploration subsystem was given no initializing condition.
This variant proved to be extremely time-demanding and significantly exceeded the competition
time limit. As seen in Figure 17, the uninformed search for the building pattern alone required
approximately 15 minutes – half of the entire time budget. This was caused by multiple contributing
factors.

Firstly, the perception range for pattern detection is fairly limited. Since the building pattern
is laid out flat on the ground, the robot cannot exploit its long-range LiDAR, which is otherwise
used to detect the objects of interest. Instead, we have to rely on the onboard RGB camera and
the image-segmentation techniques described earlier. To clearly distinguish the checkered pattern,
the observation has to be made from above. With increasing distance between the robot and the
pattern, the observation angle becomes very shallow, and the characteristic checkered properties are
lost to aliasing. This effect can also be observed in Figure 15.

Additionally, extending the arm upwards significantly shifts the robot’s center of gravity. Driving
with the arm in an upright position turned out to be impossible, as the entire UGV became unstable
and tended to tumble over. Therefore, the arm has to be folded while driving, and the mobile base
has to stop before the arm is raised. The camera is kept stationary while the segmentation is taking
place and 10 consecutive images are used in the process. In the upright position, the arm then sweeps
horizontally in 60◦ steps, with a brief pause for the image acquisition in between. After performing
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a full 360-degree scan of the surrounding area, the arm is retracted and the mobile base resumes
driving. When combined with the mobile base braking, arm extending, scanning the surroundings,
and retracting, one such a scan takes approximately 90 seconds.

To improve exploration efficiency, we introduced the concept of “guided autonomy”. In this mode,
the robot performed the entire task autonomously, however, the exploration could be started from
a predefined position. The initial position may be set in advance, during the preparation phase,
or provided on the fly by a cooperating UAV. Using this approach, we were able to shorten the
exploration phase, so that a full section of the wall (7 bricks) could be assembled within the 30-minute
limit. The values shown in Figure 17 represent a conservative time estimate based on a scenario
wherein the objects of interest are located in the opposite corners of the arena and the robot has to
traverse a large distance.

Despite a significant speedup, the time budget was still very tight with almost no room for error.
Due to the need for precise alignment of the robot base with the bricks before picking up each
of them, the loading procedure itself took almost 10 minutes. The brick manipulation had to be
performed rather slowly, as faster motion or sudden acceleration might cause the brick to be dropped
by the magnetic gripper. The unloading procedure was similar to brick loading and also required
nearly 10 minutes, due to the slow and careful brick handling, as well as the continuous alignment
of the mobile base with the building pattern.

Before the competition trials, we have also prepared an emergency protocol, where the robot
would only load one brick and deliver it to the building area immediately. In the remaining time,
the robot would attempt to pick up and deploy additional bricks in a second run. This procedure
ensured, that the UGV would not hinder the faster and more agile UAVs, as the rules of competition
required both robot types to score at least once in the same trial.

5.2. Brick stack detection
Detection of stacked bricks was crucial during the exploration phase. We have developed detection
techniques based on the segmentation of the point cloud provided by the Velodyne VLP-16 LiDAR.
The processing pipeline is discussed in greater detail in Section 4.4. In Figure 18a, we show the
line segments extracted from the point cloud. The segments are classified based on their length and

(a) Line segments extracted by the IEPF
algortihm.

(b) Red brick pile localization by the EM algorithm. The
red crosses represent the estimated position of the brick pile
center in 5 consecutive iterations of the EM. The ground-
truth is highlighted in orange, the UGV position is marked
by a purple dot. Several false-positive detections are visible
in the lower half of the image.

Figure 18. Estimation of the brick stack position and orientation using the Velodyne VLP-16 LiDAR. The black
dots represent the raw point cloud returned by the sensor. The line segments extracted from the data are assigned
a color based on the most likely brick class. The processing pipeline also utilizes a priori knowledge of the pickup
zone layout to filter out the false-positive candidates.
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Table 2. Accuracy of brick candidates generation by the IEPF algo-
rithm. The evaluation was performed offline using data collected during
one of the rehearsals.
Brick color Correct Incorrect Success rate
Red 174 70 0.713
Green 57 19 0.75
Blue 24 63 0.275
Orange 32 11 0.615

Figure 19. Approximate detections of the UGV building pattern, as acquired by the wide-angle camera onboard
the UAV during the Brick Challenge trials. The black and white rectangle represents the estimated position of
the pattern edge. Note that the detections are transformed into 3D using the known UAV position within its local
frame. The 3D position is used as an overlay for the fish-eye image for visualization purposes. The overlay does
not apply any transformation to account for the lens distortion, which results in a misalignment of the marker.

position in the brick stack. The most likely brick class is assigned to each segment and the segment
is colored accordingly.

Figure 18b demonstrates the first few iterations of the EM algorithm. This algorithm is used
to estimate the position and orientation of the brick piles in the pickup area. The extracted line
segments usually include a large number of false-positive classifications, as seen in Figure 18b.
However, the processing pipeline is capable of filtering out the false-positive data by leveraging the
a priori knowledge of the pickup area layout. Only a coarse estimate of the pickup area position and
orientation is required. Finer alignment is performed afterward, using the wrist-mounted RGBD
camera and visual servoing.

The accuracy of the brick candidates extraction from the LiDAR data by the IEPF algorithm is
shown in Table 2. The evaluation was performed offline by processing one of the datasets obtained
during the competition rehearsals. Without any additional filtering or sensor fusion, the classifier
success rate is strongly correlated with the total number of bricks deployed in the pickup area. The
lowest success rate was achieved for the blue bricks, which also represent the least numerous brick
class. As a result, the classifier is more susceptible to false-positive detections. The success rate can
be significantly improved by fusing the candidate positions with the current position of the UGV
provided by the localization pipeline. Further improvements are made by the EM algorithm, which
utilizes that the shape and layout of the pickup area are known in advance.

5.3. UAV-assisted pattern detection
The UAVs were equipped with two down-facing cameras: the Intel Realsense D435 and the
mvBlueFox-200w – an RGB camera with a fish-eye lens. Throughout the development of the aerial
system, it turned out that disabling the RGB stream from the D435 improved the reliability of the
depth stream, leaving the mvBlueFox as the only option for pattern detection. Figure 19 shows the
detections made by one of the UAVs in the MBZIRC arena. An approximate position of the building

Field Robotics, March, 2022 · 2:75–106



Towards new frontiers in mobile manipulation: Team CTU-UPenn-NYU at MBZIRC 2020 · 99

(a) Poor illumination at night (b) Strong lateral illumination at
sundown

(c) Broad daylight

Figure 20. The visual servoing and brick grasping procedures have been tested under a variety of lighting
conditions, to ensure a robust performance throughout the entire competition day.

pattern was repeatably obtained by the UAV in each rehearsal, as well as in the competition trials.
The data, however, was not actively shared with the UGV, due to coordinate-frame incompatibility.

Each UAV was using a local coordinate frame, and the mutual synchronization relied on GNSS
providing a common origin. The UGV was localized using the onboard LiDAR and wheel odometry
without an external positioning system. Synchronizing the two frames of reference by simply adding
a GNSS receiver to the ground robot was not possible. The onboard equipment, notably the devices
using an Ethernet connection (the Velodyne LiDAR and the Kinova arm), induced significant
electromagnetic interference, making the receiver unable to get a fix.

Unfortunately, we did not manage to implement a reliable coordinate-frame synchronization
system in time before the competition, and therefore the pattern position detected by the UAV
could not be used to assist the UGV directly. Due to the fear of clogging the communication
channel and disrupting the mutual UAV coordination, the UAV-UGV communication link was not
even initialized in the competition trials. Instead, we estimated the position of the pattern from
images taken during the previous contest rounds, and the communication was only emulated.

5.4. Competition trials
Since the competition was held throughout the whole day, we have extensively tested the visual
servoing and brick grasping under various lighting conditions, as shown in Figure 20. These
conditions ranged from near-complete darkness11 to broad daylight. Having the perception invariant
to external illumination allowed the robot to grasp and load the bricks at any time of day in a reliable
and repeatable manner.

The final experimental evaluation took place at the MBZIRC 2020 Challenge rehearsals and
competition trials. The main problem encountered was that the ground of the contest area was not
flat as expected, but its central part formed a long non-flat slope. The bricks were placed at the edge
of the slope, which not only complicated their detection by the LiDAR, it also meant that the robot
was not positioned vertically during the brick pickup and loading. The sloped pickup area was also
one of the reasons, why several teams were not able to pick up a single brick in the competition.

Since the gripper was partially compliant, the bricks were not held straight, and their angle
relative to the robot was not the same as if the robot were positioned on level horizontal surface.
This had a negative impact on the ability to store bricks in the cargo bay, as shown in Figure 21.

During the first competition trial, the placement of the brick stack on the edge of the slope
triggered an erroneous output of our obstacle detection system, which perceived the bricks as if
they were inside an obstacle. For this reason, the UGV was unable to reach the brick stack on the
first day of the contest. After the setback, we processed the LiDAR data recorded during the trial

11 Video from the experiment: http://mrs.felk.cvut.cz/fr2020ugv
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(a) Loading on level ground (b) Loading on the inclined surface (c) Result of the misaligned loading

Figure 21. Loading bricks into the cargo bay using the manipulator arm. On level ground, the robot was able to
fill the cargo bay as intended. However, during the competition, the bricks were positioned on an inclined ramp,
which ran through the center of the arena. In such a case, the bricks were not being lowered into the cargo bay
along a vertical line. As a result of the misalignment, the bricks could not have been stored with the expected
level of precision.
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Figure 22. The duration of individual sub-processes in the final trials of the MBZIRC 2020 competition. On
the first day, the robot never reached the brick stack due to a navigation error. On the second day, the initial
inventory requirement was set to 1 red brick, which the robot successfully loaded and deployed to the building
pattern. Afterward, a manual reset was requested to install fresh batteries to all the robots. In the remaining
time, the robot attempted to place 3 additional bricks. However, the operation was interrupted while filling up
the inventory, after one of the UAVs had performed an emergency landing directly in front of the robot.

and the rehearsals and updated the obstacle detection pipeline to work as intended regardless of
the arena configuration.

For the second trial, we also enabled the emergency protocol to place at least one brick as quickly
as possible. The first run of the second trial was successful, and the robot was able to autonomously
pick up, deliver and place one red brick in under 7 minutes, as shown in Figure 22. After the
first run, a manual reset was requested to install fresh batteries on all the robots. Following the
reset, the inventory requirement was set to 1 green and 2 red bricks. However, the onboard safety
system aborted the execution while filling up the inventory, after one of the UAVs had performed
an emergency landing directly in front of the UGV. After the second reset, it was no longer possible
to deliver additional bricks within the remaining time.

As mentioned before, our system was among the only two UGVs that managed to place at
least one brick in autonomous mode during the competition trials. Figure 23 shows the system as it
performed the entire task successfully during the final round of competition. In cooperation with the
UAV system (Baca et al., 2020), our team (CTU-UPenn-NYU) managed to win the Brick challenge
in a landslide, scoring 8.24 points. Team NimbRo (Lenz et al., 2020) from the University of Bonn
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(a) Loading a red brick into the
cargo bay

(b) Searching for the checkered pat-
tern

(c) Successful placement of the red
brick

Figure 23. Snapshots from the successful competition trial. For this trial, we opted to employ a reliable and
well-tested strategy, which ensured placing a single red brick onto the building pattern.

ranked second with a score of 1.33 points and the Technical University of Denmark ranked third
with a score of 0.89 points.

6. Conclusion
We have presented a complex, mobile manipulation system for localizing, grasping, transporting,
and precisely placing magnetic objects. Our system can operate autonomously in a semi-structured
environment and even handle unexpected encounters with dynamic obstacles, such as bricks dropped
by other robots.

Our design relies solely on onboard sensors for localization and uses the Adaptive Monte Carlo
Localization approach. We have introduced an extension of the localization approach to improve
reliability in environments with relatively sparse feature-density and an uneven ground plane. The
implementation also corrects for drift in wheel odometry caused by dynamic shifts in the robot’s
center-of-mass as bricks are added into the cargo bay and the manipulator arm moves.

We have conducted a thorough experimental evaluation in a broad variety of conditions. The brick
detection and loading subsystems have been proven to work even at night, without the need for an
external light source. As a result, such a mobile manipulator may also be deployed in a poorly
illuminated indoor environment, or perform the outdoor-indoor transition without the need for
modification. Furthermore, we developed a series of efficient computer-vision techniques for quickly
and reliably detecting both component bricks and the target construction pattern. We were able
to run the necessary image-segmentation and feature-extraction methods on the onboard computer
in real-time. This performance allowed us to use visual servoing to precisely align both the mobile
base and the manipulator with the target object. We also used tightly-coupled motion control for
the mobile base and the manipulator arm. In combination with the aforementioned computer-vision
techniques, our system was able to achieve centimeter-level precision in grasping and placing objects.

The entire system is built using commercially available off-the-shelf components except for
the magnetic gripper. After the competition, the control software was released as open-source
(Broughton et al., 2020).

6.1. Lessons learned
Throughout the MBZIRC 2020 competition, we have seen many other teams successfully place at
least one brick in a controlled environment. However, nearly all teams struggled to perform the same
task in the competition arena for various reasons. The most notable obstacle was the inclined ramp,
upon which the brick pickup area was placed. This obstacle also thwarted our primary intention of
loading multiple bricks at the same time.

Despite the setbacks, we have greatly benefited from the complex inventory-management system
that we had developed primarily for debugging purposes. The inventory manager allowed us to
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practice different scenarios and start the task with an arbitrary cargo bay load. Most importantly,
however, it allowed us to change the strategy on the fly. After encountering the loading issues on
the first competition day, we were able to turn on the emergency protocol by simply changing
the number of bricks required by the inventory manager to one. After successfully fulfilling the
minimum requirements, the manager would automatically adjust the requirements for the next run.
This scenario, among others, was extensively tested during our experimental sessions conducted at
the Campus of the New York University in Abu Dhabi, see Figure 16. For this reason, the well-tested
backup solution was activated for the final round of competition.

The sequential nature of the task essentially requires all subsystems to perform flawlessly to
successfully place a brick onto the building pattern. The result of each action directly feeds into the
next action and essentially creates a serial execution pipeline, where a failure of one node results in
a failure of the overall system. We aimed to develop a system capable of operating without human
supervision for extended periods of time. For this reason, special effort was put into failure detection
and recovery mechanisms, which were embedded into all levels of the control hierarchy, and ensured
that the robot carried on with the task even after one of the actions had failed.

Redundant perception sources also played a crucial role in our success, as they allowed the system
to detect faulty readings and trigger automated recovery actions. It is worth noting, that nearly all
aspects of perception within the system utilize two or more independent sensor inputs and that the
fallback process after an unsuccessful attempt usually switches to a different perception or motion
system.

The brick pickup phase was by far the most complex part of the challenge, and some sort
of recovery behavior was triggered almost routinely during this phase. However, the alternating
use of both motion systems (mobile base, manipulator), paired with the powerful computer-vision
methods, allowed the robot to achieve centimeter-level grasping accuracy in a reliable and repeatable
manner.

The built-in failure detection and recovery system significantly improved the robustness of the
overall system and allowed the UGV to better cope with the actual conditions inside the competition
arena. The redundant design is also in accordance with the latest demands from the industry, where
safety and reliability are the most desirable attributes of a mobile manipulator, especially if the
workspace is shared with other mobile robots or humans.

6.2. Future work
There were also certain aspects of the system that would benefit considerably from further
development. During the contest, brick manipulation was by far the slowest component of the
system. We did not employ any advanced control or motion planning for the gripper trajectory.
Instead, the manipulator followed a sequence of pre-defined waypoints in the joint space. To
prevent the loss of a grasped object, the maximum allowed acceleration of the arm had to be
very limited. Using a desired torque or acceleration as a reference would allow us to make faster
maneuvers, even with a grasped brick, and reduce the overall manipulation time. We would also
like to finish the coordinate-frame synchronization work to enable proper real-time cooperation in
future heterogeneous robotic systems.
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Štěpán, P., Krajník, T., Petrlík, M., and Saska, M. (2019). Vision techniques for on-board detection,
following, and mapping of moving targets. Journal of Field Robotics, 36(1):252–269.

Field Robotics, March, 2022 · 2:75–106



106 · Štibinger et al.

Thoben, K.-D., Wiesner, S., and Wuest, T. (2017). “industrie 4.0” and smart manufacturing-a review of
research issues and application examples. International journal of automation technology, 11(1):4–16.

Triebel, R., Arras, K., Alami, R., Beyer, L., Breuers, S., Chatila, R., Chetouani, M., Cremers, D., Evers,
V., Fiore, M., et al. (2016). Spencer: A socially aware service robot for passenger guidance and help in
busy airports. In Field and service robotics, pages 607–622. Springer.

Wise, M., Ferguson, M., King, D., Diehr, E., and Dymesich, D. (2016). Fetch and freight: Standard platforms
for service robot applications. In Workshop on autonomous mobile service robots.

Xu, L. D., Xu, E. L., and Li, L. (2018). Industry 4.0: state of the art and future trends. International
Journal of Production Research, 56(8):2941–2962.

How to cite this article: Štibinger, P., Broughton, G., Majer, F., Rozsypálek, Z., Wang, A., Jindal, K., Zhou,
A., Thakur, D., Loianno, G., Krajník, T., & Saska, M. (2022). Towards new frontiers in mobile manipulation:
Team CTU-UPenn-NYU at MBZIRC 2020. Field Robotics, 2, 75–106.

Publisher’s Note: Field Robotics does not accept any legal responsibility for errors, omissions or claims and
does not provide any warranty, express or implied, with respect to information published in this article.

Field Robotics, March, 2022 · 2:75–106


