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Abstract: This paper presents a framework for urban firefighting with a heterogeneous
aerial/ground robot team. The system was developed to address Challenge 3 of the MBZIRC’20.
The challenge required autonomously detecting, locating, and extinguishing fires on multiple interior
floors and on exterior facade and ground surfaces. Our multi-robot system consists of a robot team
of up to three Unmanned Aerial Vehicles (UAV) and one Unmanned Ground Vehicle (UGV). We
describe the main hardware and software components for UAV and UGV platforms and present the
system’s main algorithmic components: a 3D LIDAR-based Mapping and Localization module able
to work in GPS-denied scenarios, a Global Planner and a fast local re-planning system for robot
navigation, Infrared-Based Perception and robot actuation control for fire extinguishing, and Mission
Executive and coordination module based on Behavior Trees. Finally we describe our results from
the competition, where the system worked fully autonomously and scored in all the trials performed.
The presented system ended in 7th place (out of 20 teams) in Challenge 3 and 5th place (out of 17
teams) in the Grand Challenge’s Challenge 3 portion.
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1. Introduction
The application of robotic technologies in disaster management and rescue operations has increased
in recent years, due to advances in platform design and capabilities for mapping, localization,
perception, planning, and coordination capabilities (Delmerico et al., 2019). The goals continue to
be: Decrease the risks that humans face in such activities and, at the same time, increase operational
effectiveness.

Robot competitions foster advancements in robotics research for these applications and allow
proper benchmarking for different approaches. Some examples related to search-and-rescue and
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disaster-management scenarios are: Defense Advanced Research Projects Agency (DARPA) Robotics
Challenge (Pratt and Manzo, 2013), RoboCup Rescue competition (Sheh et al., 2016), euRathlon
and ERL Emergency (Winfield et al., 2017), DARPA Fast Lightweight Autonomy program (Mohta
et al., 2018), Trinity College Robot Competition Schedule Changes (TrinityCollege, 2020) and the
Mohamed Bin Zayed International Robotics Challenge (MBZIRC, 2020).

Among these missions and challenges, firefighting constitutes a relevant application of robot
systems, given the dangerous conditions in which human firefighters must operate. Human agents
are at a constant risk of being burned, becoming trapped, or inhaling smoke. The risks of losing
lives could be greatly reduced by using autonomous robots capable of searching, detecting and
extinguishing fires (Chen et al., 2019). Current automated systems, however, are generally fixed in
place. For instance, automatic fire sprinklers and alarms are used in heavily populated and hazardous
areas for rapidly extinguishing any fire. Mobile robotic firefighting systems, such as ground and aerial
robots, on the other hand, could traverse unsafe and/or inaccessible areas to collect information
through onboard sensors (visual and infrared cameras, LIDAR, etc) (Pecho et al., 2019) and even to
perform extinguishing operations (Innocente and Grasso, 2019). Such technology would offer critical
new capabilities on real-time situation awareness and remote extinguishing to firefighters. Achieving
this vision still requires, though, advancing the state of the art and improving robustness, both in
software and hardware. We also need progress in other, specific areas (Delmerico et al., 2019), such
as performance in indoor and outdoor environments, clear-fire image detection (Aydin et al., 2019),
and autonomous navigation (Imdoukh et al., 2017).

The MBZIRC 2020 competition addressed this opportunity directly in its Challenge 3: “Team of
Robots to Fight Fire in High Rise Building”. The mission required a collaborative robot team to
detect, localize, and extinguish fires in a simulated high-rise building. The tasks involved putting
out fires located inside and on the walls of a building at different heights and floors, and outside
the building, by using water and fire blankets. This challenging mission requires extending the
state-of-the-art in several areas: deploying and coordinating multiple, heterogenous robots (UAVs
and UGV) in the same urban workspace; navigating autonomously in cluttered, indoor/outdoor
environments; autonomously seeking and locating of fires; adapting hardware and control systems
for fire extinguishing.

This paper details a fully autonomous, multi-robot system for extinguishing fires in such urban
high rise building firefighting scenario. Our robot team comprises three aerial and one ground
vehicles. Of 20 teams competing in Challenge 3, our system achieved seventh place. In the Challenge
3 portion of the Grand Challenge, we finished fifth out of 17 teams.

Our main contributions relate directly to the technical advances required to address MBZIRC
Challenge 3 with a fleet of heterogeneous robot in fully autonomous mode. More specifically, we
developed:

• A multi-modal robust localization module, able to operate in GPS-denied scenarios
• A flexible mission composition and execution system based on Behaviour Trees (BT)

(Colledanchise and Ogren, 2017) in charge of combining all modules to define the behaviors of
each robot and that of the whole team to accomplish missions

• Specialized navigation, control and perception modules, and hardware employed in the compe-
tition.

While the competition allowed the use of GPS and even DGPS (with a penalization in this latter
case), the ability to operate without GPS was crucial to navigate autonomously and score in all
trials, given the intermittent reception due to satellite occlusion and other factors. The versatility
of BTs was as well fundamental to adapting quickly to competition conditions.

The paper is organized into eight sections. Section 2 describes the hardware designs for the
UAV and UGV platforms. Section 3 presents the mapping and localization system implemented.
The autonomous navigation system of each platform is described in Section 4. Section 5 shows
the approach proposed to detect and extinguish the fires and Section 6 presents the framework
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used to carry out the mission. Experiments are presented in Section 7. Finally, lessons learned and
conclusions are described in Section 8.

1.1. State of the art
The idea of using robots for firefighting has been present in the community for many years. Early
designs can be traced back to (Bradshaw, 1991), which describes the functional and mechanical
design of a ground robot for fire detection and first intervention in indoor environments. In (Amano
et al., 2001), the authors show the design of a climbing robot for helping fire activities in buildings.
All in all, robots are considered a promising tool to fight fires because of their ability to reach
inaccessible zones, assist in dangerous environments, and to carry sensors to monitor and control
the fires.

Actually, robotic technology is being often deployed as part of firefighting operations in the last
years. Current examples can be found in the Notre Dame fire in 2019 with the firefighting ground
robot called Collosus1. It is a remote-controlled firefighting automaton designed and built by Shark
Robotics. TC800-FF is another remotely operated ground robot with some autonomous navigation
capabilities designed to assist fire-fighter during operations2. Two of the most popular firefighting
ground robots are the Thermite RS1-T3 and RS2-T23. The aim of all these robots is to replace
fighters and to keep them safe and free from the heavy work that distracts them and takes time
away from solving problems quickly and effectively. Most of these systems are mainly teleoperated.
While teleoperation can be enough for certain scenarios, the inclusion of autonomous capabilities
expands further the utility of such systems, and can be very relevant when fleets of several robots
are involved, like in the MBZIRC challenge.

Furthermore, in the case of high-rise buildings and in other scenarios, the use of aerial robots
can be beneficial. In the last 15 years, Unmanned Aerial Vehicles (UAVs) have been more and
more used in wildfire fighting (e.g. (Ambrosia et al., 2003; Casbeer et al., 2006; Merino et al., 2006;
Skeele and Hollinger, 2016; Bailon-Ruiz et al., 2018)). These systems are mainly used as “eyes in
the skies", to provide situational awareness to first response teams, given their capability of carrying
sensors and position in vantage points. Some of these works (Casbeer et al., 2006; Merino et al.,
2006; Bailon-Ruiz et al., 2018) have shown the advantages of using teams of cooperating UAVs for
firefighting. In particular, we have also shown in our former works (Merino et al., 2006; Merino
et al., 2012) the added value of cooperating heterogeneous UAVs with different capabilities and that
can carry complementary sensors in order to localize precisely fire spots and discard false alarms.
Currently, drones are used as part of wildfire operations, as for instance during the Australian
bushfires where drones were used to search and rescue koalas affected by the fires (Witt et al., 2020).

Those works do not consider the inclusion of fire suppression mechanisms, which for UAVs is also
a challenge. A novel hose type robot, which can fly directly into the fire source via a water-jet, has
been proposed in (Ando et al., 2018). In (Yamada and Nakamura, 2016) the concept of attaching
a drone to the tip of a fire hose and remotely extinguishing a fire is presented. These studies have
not been tested in a real fire extinguishing task. Problems such as the payload and influence of the
tension of the hose itself on the flight must be addressed to bring the UAV’s hose closer to the fire
source.

When considering the use of autonomous robots to fight urban fires in buildings as in MBZIRC,
additional challenges are present, like the navigation in cluttered and GPS-denied environments
or with limited GPS coverage, as is typically the case in urban canyons and/or close to and inside
buildings, and the operation in low-visibility conditions (Schneider and Wildermuth, 2017). The last
years have seen important advances in the navigation of UAVs in GPS-denied scenarios (for instance
(Shen et al., 2014; Mohta et al., 2018; Perez-Grau et al., 2018; Usenko et al., 2020)). However, there

1 https://www.shark-robotics.com/colossus
2 https://www.robotpompier.com/en/
3 http://www.roboticfirefighters.com/
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Figure 1. Arena of Challenge 3. There are simulated fires on the facades of the building (top-left), and inside
the building (down, right), located on the ground, first and second floor (to be suppressed with water). There
are also fires located on the ground outside (down, left) that need to be suppressed with a blanket.

are still issues that need to be addressed to navigate and precisely position the UAVs to attack fires
in urban scenarios like the one posed by Challenge 3 of MBZIRC.

The cooperation between UAVs and UGVs presents additional challenges. In (Michael et al., 2014)
the synergies between a UGV and UAVs are exploited to map buildings affected by earthquakes. But
there are not many works in the literature that consider fully-autonomous ground and aerial robots
for firefighting in urban scenarios. In (Maza et al., 2011), a system of multiple UAVs cooperating
with a static sensor network for a fire scenario in a building is presented. UAVs are used to deploy
new sensors and provide situation awareness, which is then used to attack the fire by firefighters. The
work shows again how cooperation can be very valuable. However, the system assumes GPS coverage,
no ground robots are considered, and no extinguishing is performed by the robots themselves.

In sum, addressing a fire extinguishing scenario in a high-rise building by a team of robots, as the
one posed by MBZIRC, still requires advances in localization, navigation, perception, and mission
coordination and execution of the system as a whole. The paper presents in the next sections the
proposed advances in those lines, discussing further literature pertinent for each case.

1.2. Problem statement
This section summarizes the main aspects of the rules, conditions, and scoring of the MBZIRC
Challenge 3. The challenge requires a team of UAVs (maximum three) and UGV (maximum one)
collaborating in order to autonomously extinguish a series of simulated fires in an urban high rise
building firefighting scenario. Figure 1 shows the arena for Challenge 3, with a size of approximately
that of half a football pitch. A 15-meter high structure simulates the building.

The robots have to extinguish a set of six fires located in the three floors of the building
using water. For each floor, there is one fire inside the building and one fire on the facade (see
Figure 1). Furthermore, there are two fires located outside the building at ground level that must
be extinguished using fire blankets carried by the robots. The locations of the fires are changed
randomly between trials.

Each fire is scored between 0 and 1. For the fires in the building the maximum score is obtained
if the amount of water properly thrown into the fire is 1 liter. Simulated fire spots on the ground
score when they are covered with a blanket (with a maximum when they are totally covered). The
final score is obtained by a weighted sum for all eight fires. Different fires receive different weights
according to their difficulty.

The mission can be attempted in either fully autonomous or manual mode. The mission is
considered in manual mode from the moment there is an intervention by a human (the only
interventions allowed are to replenish water and change batteries and blankets). Any score in manual
mode is considered below a score in autonomous mode, or to disambiguate in case of a draw for

Field Robotics, March, 2022 · 2:241–273



An aerial/ground robot team for autonomous firefighting in urban GNSS-denied scenarios · 245

Figure 2. The ground platform used for Challenge 3.(a) Showing performance in the scenario of MBZIRC
(b) Deploy of onboard sensors and Water Extinguishing System

scores in autonomous mode. GPS is allowed. RTK/DGPS can be used although a penalty of 25% will
be applied if it is used. The duration of Challenge 3 is 15 minutes, with a 5-minute preparation slot.

2. Hardware
The robot team to address the challenge consists of one UGV and and up to three UAVs. They are
adequately equipped to perform navigation and to detect and extinguish the fire for this firefighting
scenario.

2.1. Unmanned ground vehicle
The ground platform called SIAR (Alejo et al., 2020) is a 6-wheeled robot with independent
traction system and a pan&tilt mechanism on top. The robot is able to navigate at a maximum
speed of 0.7 m/s and it has battery autonomy for more than 4 hours of operation (motion and
sensing/computation). The robot integrates an i7 computer, local sensing and a 3D LIDAR. The
main sensors and mechanisms used in the ground platform are (see Figure 2):

• GPS sensor UBlox 8 and ArduIMUv3 Inertial Measurement Unit (IMU).
• LIDARs: A 3D OS-1-16 LIDAR Ouster, located on top of the robot. The LIDAR is able to

provide 320k 3D points per second, ranging from 0.2 to 120 meters. The information gathered
by this sensor is used for localization and mapping. Furthermore, a Hokuyo UTM-30LX 2D
sensor is installed. The information of this sensor is used for local obstacle detection/avoidance.

• Cameras: A SeekThermal IR camera to detect the sources of heat and an Orbbec’s ASTRA
camera that provides the operator with images to operate the platform if needed.

• Pan&Tilt unit: It moves the thermal camera for searching and centering the fire, and at the
same time, it holds and guides the hose of the extinguishing system to aim the fire.

• Extinguishing System: It consists in a series connection of two water pumps (5V, 4.8 W, 300cm
Hmax, 300L/H, no valve), one MOSFET module 5V, hoses, and a 3-liter water tank (within
the limits of the competition). To improve the intake of water, the tank is placed above the
water pumps. Alike, the output hose is placed above the pump to prevent the water from going
out, as the pumps do not have a valve. The system ejects 2 meters in a straight line water.

2.2. Unmanned aerial vehicles
Regarding to the aerial platforms, the models used for the competition are adaptations of the
DJI Matrice 210 V2 (M210) and the DJI Matrice 600 Pro (M600) (see Figure 3). We selected
these platforms because of the robustness of the hardware and software, support that the provider
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Figure 3. (a) Adapted DJI Matrice 210v2 for facade fire extinguishing, with LIDAR and PC placed to avoid
blocking the down-looking sensors. (b) Adapted DJI Matrice 600 for blanket deployment and facade fire
extinguishing.

offers, and their facility to communicate the PC on-board with the Robot Operating System (ROS)
(Quigley et al., 2009). The drone’s structure was adapted in order to perform the tasks and to
integrate new hardware. For that, we take into account the maximum weight that can carry each
drone and also the dimension constraints of the competition. Each UAV robot integrates an i7 NUC
computer and local sensing. The main sensors and mechanisms added to the UAVs are (see Figure 3):

• DJI Matrice onboard sensors. This includes single GPS, Inertial Measurement Unit (IMU) and
barometric altimeter. DJI Matrice 600 intergrates 3 GPS receivers and 3 IMUs for redundancy
and fault detection purposes, but they behave as single devices.

• 3D LIDAR. OS-1-16 LIDAR Ouster. The purpose of this sensor is threefold: environment
mapping, localization, and odometry. It is the basis for the generation of the 3D map of the
environment, and to compute an accurate robot odometry for the UAVs. It is also used as main
sensor for robot localization in all robots, and to detect obstacles by the navigation module.

• Infrared camera: SeekThermal used for fire detection. In M210 carries one camera looking
forward, while the M600 carries an additional one in a nadir configuration for the ground fires.

• Water Extinguishing System: we use the same pumps as the UGV platform, but with less
capacity due to payload constraints. We use two 0.5-liter water tank, positioned on each leg of
the drone to evenly distribute their weight. The tanks’ outlets are joined to carry the water to
the pumps.An aluminum tube is used to guide the outlet hose from the pumps to a safe area
in which the air turbulence generated by the drone itself does not disperse the water when it is
ejected. A flow restrictor is placed at the outlet of the hose to increase the pressure and range.

• Blanket Extinguishing system (M600 only): we use six electromagnets to carry and drop the
blanket. Electromagnets are located on a bar placed between the back two legs of the drone.
The blanket is transported rolled up to prevent the air turbulence generated by the drone
from producing a sail effect. The electromagnets are distributed into two groups of three
electromagnets each. In each group, there is one electromagnet for rolling the blanket and
two for dropping it. When desired, the rolling electromagnets are deactivated and the blanket
is unrolled, and when the blanket is to be thrown, the drop electromagnets are deactivated.

3. 3D Mapping and Localization
The application considered requires that the robots are localized seamlessly and accurately both in
GPS and GPS-denied environments (including buildings interiors, urban canyons and, in general,
areas with high dilution of precision), with a smooth transition among them. Our solution consists
of a map-based localization system that fuses data from different sensors.
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Figure 4. Two views of the map generated for Challenge 3 of the scenario shown in Figure 1 with data provided
by the M600 UAV. (a) a map perspective in 3D space and (b) the top view of the map.

The proposed mapping and localization system consists of two main components : a LIDAR-based
odometry and mapping and an online map-based global localization module. These systems create
the global map during the mapping phase, and estimate the global position of the robot into the
map during the mission respectively. While there are some minor differences in the implementations
for the UAVs and UGV, the modules are based on the same principles.

3.1. 3D Mapping and multi-sensor odometry
Different approaches can be used for 3D mapping and odometry in aerial vehicles. Stereo cameras
(Kitt et al., 2010; Geiger et al., 2011; Schmid et al., 2013) and RGBD (Endres et al., 2012; Kerl
et al., 2013) are common choices indoors or for outdoor navigation close to obstacles. However
RGBD and time-of-flight cameras cannot work under strong sunlight, and stereo cameras would
need a large baseline in order to accurately estimate distances at 25 meters approximately (as the
case of Challenge 3). Bundle adjustment approaches (Cucci et al., 2017; Pagliari et al., 2015) can
be used offline in combination to visual cameras or short-baseline stereo to build accurate maps
outdoors, but they cannot provide reliable odometry during the robot operation. On the other
hand, 3D-LIDAR approaches work outdoors, range up to 120 meters and can perceive the 360º of
the robot’s environment.

Thus, the base of the proposed mapping and localization systems is a LIDAR-based odometry
system that estimates the relative motion of the robot. This module considers IMU and 3D LIDAR
measurements to compute a reliable 6DoF robot odometry. It also provides short-term aligned scans
that can be used for local mapping, and a map of the environment.

The LIDAR-based odometry module makes use of the LIDAR Odometry and Mapping (LOAM)
system (Zhang and Singh, 2014; Zhang and Singh, 2017), which decomposes the original SLAM
problem into scan registration and mapping. The system computes high-precision motion estimates
and maps. We make use of an open software implementation of the original LOAM system4.

In the mapping phase, a drone equipped with LIDAR, GPS and on-board sensors (IMU, altimeter,
etc) was flown manually over the Challenge 3 arena , mapping the environment at different altitudes,
from 2 meters to the top of the building. The resulting 3D map is shown in Figure 4. It can be
seen how the system accurately mapped the interior of the building and also the four scaffolding
structures in the corners. Originally, the map also included the surrounding buildings, but they were
removed to reduce its size because these areas were unreachable by the robots. During the mapping
stage, the GPS data was used to compute the relative transformation between the map-based global
frame and the GPS coordinate system for multi-sensor localization.

4 https://github.com/HKUST-Aerial-Robotics/A-LOAM
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3.2. Multi-sensor robot localization
The localization module provides a robust global position of the robot within the map built in
Section 3.1. Map-based approaches for localization are usually better than SLAM approaches in
terms of reliability and computational requirements. Thus, decoupling the robot localization from
the map building process saves computation resources because the map is built offline once, and the
complexity of the algorithm is usually smaller with the corresponding impact in reliability.

One of the approaches based on predefined models of the environment is commonly known as
teach-replay (Gridseth and Barfoot, 2019; Royer et al., 2007), which is accomplished in two stages:
first the robot is manually piloted along the desired path as in a teaching phase, and an accurate 3D
map of the environment is built, along with the robot motion from this learning path; afterwards,
this map is used to locate the robot when it repeatedly visits the same path. Although very effective,
these approaches are not general enough since they only enables a robot to follow a predetermined
trajectory.

Monte Carlo Localization (MCL) is another approach that makes use of a known map of the
environment, and is commonly used for robot navigation in indoor environments (Thrun et al.,
2001). It is a probabilistic localization algorithm that makes use of a particle filter to estimate the
pose of the robot within the map, based on sensor measurements. An extension of this approach
for 6D localization based on 2D laser scanner is presented in (Hornung et al., 2010), but it is meant
for the 2D motion of humanoid robots in a 3D environment, which makes it not suitable for aerial
robots. The use of GPUs can enhance the computing capabilities of the on-board system regarding
MCL-based approaches, as proposed by other authors (Kanai et al., 2015; Fallon et al., 2012).

The approach used in this paper is based on Monte Carlo localization. It extends our previous
work presented in (Perez-Grau et al., 2017b) with the following aspects:

• The particle prediction model has been adapted to absorb non-modelled errors in the odometric
system. One of the major issues of MCL approaches are their dependence on the odometric
model. A faulty odometry quickly leads to filter divergence due to a wrong dispersion of the
particles into the solution space. We included new random terms into the particle prediction
model in order to account for these non-modelled errors.

• New sensor updates: Compass, altimeter and GPS were integrated into the localization
approach in order to build a multi-sensor approach with increased reliability. The MBZIRC
competition requires that the robots are localized seamlessly and accurately both in GPS and
GPS-denied environments, with a smooth transition among them. Integrating multiple sensors
improves the reliability of the solution, reducing the dependence on a single sensor and also
easy the transition from GPS-denied to full-GPS navigation.

• General improvements for faster and robust execution. The localization system is an essential
element of the robot navigation, it is involved in almost every robot task, so it must be robust,
and efficient because robot on-board computation is very limited.

The source code of the version used in the experiments is publicly available5.
The localization filter maintains N pose hypotheses (particles) defined as pti = [xti, yti , zti ,Ψt

i],
where xti, yti , zti and Ψt

i refers to the robot position and yaw angle for particle i at time t. Each
particle has an associated weight wti such as ΣNi (wti) = 1. Note how the robot roll and pitch angles
are not included into the robot pose definition. The onboard IMU already provides their values with
high-enough accuracy. This greatly reduces the computational complexity of the algorithm, allowing
for real-time onboard computation.

The particles are initialized by setting the initial pose (at the take-off spot) and distributing them
in the hypotheses space. The LIDAR-based odometry described in Section 3.1 provides increments

5 https://github.com/robotics-upo/mcl3d

Field Robotics, March, 2022 · 2:241–273

https://github.com/robotics-upo/mcl3d


An aerial/ground robot team for autonomous firefighting in urban GNSS-denied scenarios · 249

of the robot pose in the robot frame (after roll and pitch compensation) [∆xt,∆yt,∆zt,∆Ψt], which
are used to propagate the distribution of the particles at each time step. Thus, the state of each
particle pti = [xti, yti , zti ,Ψt

i] will evolve according to the following expressions:

xt+1
i = xti +Nx + ∆xt · cos(Ψt

i)−∆yt · sin(Ψt
i)

yt+1
i = yti +Ny + ∆xt · sin(Ψt

i) + ∆yt · cos(Ψt
i)

zt+1
i = zti +Nz + ∆zt

Ψt+1
i = Ψt

i +NΨ + ∆Ψt

(1)

The values of ∆xt, ∆yt, ∆zt, and ∆Ψt are drawn randomly following a normal distribution
centered in their actual values and standard deviations proportional to each increment itself. The
values of Nx, Ny, Nz and NΨ are design parameters and they are drawn randomly from a zero-
centered normal distribution with fixed standard deviation. The main purpose of these parameters
is to account for outliers in the odometry estimation. They force to randomly sample solutions not
included into the odometry estimation in view of possible errors. This random noise increases the
robustness of the solution by exploring particle states near the odometry prior.

The approach evaluates the sensors only when the robot moves above given thresholds in
translation or rotation. In this case, it performs an update: using the previous equations to predict
robot position according to odometry, updating particles based on sensors and re-sampling the
hypotheses space when required. The following sensor readings are used to update the weight wti
associated to each particle’s hypothesis pti (for the sake of clarity, the time index t is removed from
the following equations):

• The point clouds by the 3D LIDAR sensor are transformed to each particle pose in order to
find correspondences between the cloud and what the map should look like from that particle’s
pose. Since this is very expensive computationally, a 3D probability grid is computed offline as
in (Hornung et al., 2010; Perez-Grau et al., 2017a). This grid stores a value of how likely is that
a given position falls within an occupied point of the map. Thus, the probability of each cell
c = [xc, yc, zc] is computed as a Gaussian distribution centered in the closest occupied point in
the map m = [xm, ym, zm], and whose variance σ2 depends on the LIDAR noise.

grid(c) = 1√
2πσ2

e−||c−m||2/2σ2
(2)

This probability grid only needs to be computed once for a given environment, and relieves
from performing numerous distance computations between each cloud point for each particle
and its closest occupied point in the map. Besides, each point cloud is first transformed
according to the current roll and pitch provided by the on-board IMU. This transformation is
done just once per update, reducing the computational requirements as well. Then, for every
point of the transformed cloud, we access its corresponding value in the 3D probability grid.
This value is an indicator of how likely is that the point is part of the map. Assuming that the
point cloud is composed of M 3D points vj , the weight wmapi of each particle pi is computed
by adding the associated probability grid values:

wmapi = 1
M

M∑
j=1

grid(pi(vj)) (3)

where pi(vj) stands for the transformation of the point vj to the particle’s state pi, and
grid(pi(vj)) is the evaluation of the probability grid in such transformed position.

Equation (3) can be also computed as the product of all grid(pi(vj)). However this was
discarded for the following reasons: a) outlier points vj might have a significant impact in the
weight computation, leading to almost zero in some cases, b) point clouds area easily composed
by dozens of thousands of points, given that grid(pi(vj)) ranges from 1 to 0, we can fall into
numerical errors in the product.
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• The 3D position measurements provided by the GPS are used to check how well each particle
matches the sensor reading. First, the GPS position is transformed into the map by means of
the known fixed transformation computed during the mapping task. Then, a wgps is computed
for each particle. Assuming a GPS measurement pgps, we compute the associated weight wgpsi

as follows:

wgpsi = 1√
2πσ2

e−||pi−pgps||2/2σ2
(4)

where the distance computation dismisses the altitude contribution of the GPS, which is subject
to significant noise. Also, the standard deviation of the GPS measurement σ is computed
empirically from the data gathered during the mapping stage and to account for GPS errors
in single configuration.

• We integrate the height above the ground, provided by the altitude sensor, into the MCL
through the re-sampling stage. This forces the hypotheses to be distributed around the altitude
provided by the robot altimeter. This way, we can reduce the dispersion of the particles around
Z axis, which is easily observable by means of sensors such as laser altimeter, barometer or GPS.

• We also integrate the IMU yaw angle through the re-sampling stage. The rationale behind
this decision is also based on the computational optimization and the nature of the yaw
angle. In the experiments area, the yaw angle was checked to be only slightly distorted by the
environment, so that we can trust the estimation from the magnetometer. Thus, every time
a new re-sampling is performed, the orientation of the particles are drawn from a Gaussian
distribution centered in the latest yaw value provided by the IMU. A global frame to map
calibration is used to transform the IMU yaw into the map yaw.

As mentioned, GPS and point-cloud updates are integrated into the filter. Given the distinct
nature of the two technologies involved, we calculate separate weights for each sensing modality.
The final weight of each particle is computed as a weighted average:

wi = α ∗ wmapi + (1− α) ∗ wgpsi (5)

where α is chosen depending on the particularities of the indoor environment where the robot is
going to operate. If the map used in the MCL does not contain the full environment or its accuracy
is not enough to trust the map matching, α should be lower than 0.5. Whereas if GPS measurements
are not accurate, α should be higher.

This approach is used for both robot systems, ground and aerial. However, the dispersion in Z
axis is set to a very small value in the predictive model of the ground robot, as the UGV stays on
the floor surface.

3.3. Experiments
A set of experiments has been conceived in order to validate and benchmark the presented approach.
Thus, we first compared the estimation errors of our approach with respect to MCL3D (Perez-Grau
et al., 2017b). We use a software implementation and datasets publicly available6 to benchmark our
approach. The dataset provides the LIDAR data gathered by an aerial robot flying indoors in a
20x20x5 meters volume. The dataset also provides the ground-truth robot position computed with
a motion tracking system with millimetric accuracy.

Figure 5 shows the estimated robot position and orientation, as well as the computed errors with
respect to the ground-truth. In this experiment only LIDAR information and the environment map
was used, and no other sensor was considered. Both algorithms have been setup with the same
general parameters and make use of 1000 particles. The LIDAR odometry presented in Section 3.1

6 https://github.com/fada-catec/amcl3d
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Figure 5. Robot localization estimation and errors. The red line stands for the MCL3D estimation, the green
line denotes the estimation of our method and blue line stands for the ground-truth robot position and orientation
(Left) Estimated robot position in X, Y, Z and Yaw angle. (Right) Computed instant error in position (meters)
and yaw angle (radians) with respect to the ground-truth. Dashed lines shows the corresponding RMSE error.

Table 1. Estimated RMSE localization error of the proposed approach
Approach RMSE (m) RMSE (rad)
MCL3D 0.2729 0.0517
Ours 0.3226 0.0292
Ours+Alt 0.2736 0.0245
Ours+Yaw 0.2555 0.0015
Ours+Alt+Yaw 0.2167 0.0016
Ours+Gps 0.3428 0.0302
Ours+Gps+Alt 0.2777 0.0241
Ours+Gps+Alt+Yaw 0.2205 0.0016
Ours+Gps+Yaw 0.2540 0.0016

was used to compute the robot odometry. It can be seen how the errors in position are approximately
the same in both approaches. Both approaches follow the ground truth position with small errors
in X and Y, while most of the errors are introduced in the Z estimation. On the other hand, the
errors in the yaw estimation are clearly smaller in our approach, the RMSE error is roughly a 40%
smaller. This improvement mostly comes from the new particle prediction model presented in (1).
The possibility to introduce small prediction noise in the particle’s evolution helps to model small
inaccuracies coming for the odometric system.

As previously commented, the errors in Z and yaw are predominant in our approach. This is
related with the fact the 3D LIDAR mounted in the aerial robot mostly perceives the walls and
structures, but not the floor. On the other hand, the yaw angle is also prone to drift due to error
accumulation in the odometry. Section 3.2 proposes the integration of the localization approach
with other sensors such as compass, GPS and altimeter to increase the accuracy and robustness
of the system. Table 1 presents the computed RMSE error in the estimated robot’s position and
orientation for different combinations of sensors.

Table 1 presents the localization error of our proposed system with noisy sensors. We generate
these noisy readings by injecting Gaussian errors in measurements simulated from the ground truth.
This is done in order to mimic the behaviour of a real sensor. Results show how the introduction
of the yaw angle has a significant impact in the general estimation, not only in robot yaw (which is
is obvious) but also in position (see Ours+Yaw column). Similarly, the altimeter also improves the
robot position estimation. However, introducing GPS measures does not provide a clear improvement
in the estimation. This is probably produced by the relatively high sensor noise (0.5 m in X and Y
position), which is in the order of the errors obtained in the map/point-cloud matching. Despite of
this fact, having an alternative estimation of the robot position is beneficial from the point of view
of redundancy, and this is the reason why we performed experiments also with GPS integration.
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Figure 6. DJI M600 X-Y localization at the MBZIRC arena during execution of Trials 1 and 2. (a) Estimated
XY position in Trial 1. (b) Estimated XY position in Trial 2. Red line denotes the MCL estimation and blue line
denotes the GPS estimation.

The proposed approach integrating compass, altimeter and GPS was used and tested in exper-
iments involving real robot operations during the MBZIRC trials. Figure 6 shows the estimated
localization of our M600 during two experiments in the MBZIRC arena. The figure also shows the
estimated GPS position of the M600 during the experiments (blue line in the graph), which indicates
GPS estimation issues in both experiments. In this direction, Figure 6-b shows how from 175 to
625 seconds, approximately, the GPS estimation evolves at a constant velocity in Y axis, with a 15
meters jump in Y at second 625. During this period the drone was landed so the robot position
should stay approximately constant.

Figure 6-a also shows constant velocity integration in axis Y from second 225 to 475 approxi-
mately. As previously noted, the GPS eventually recovers the right estimation, converging to the
MCL estimation, which stays stable during the remaining of the experiment.

These GPS errors presented in Figure 6 were common during the MBZIRC 2020 execution. This
behaviour was detected during the rehearsal days, and we finally decided to set the value of wgps in
(5) to 0 to avoid integrating outliers into the estimation, leading to a complete GPS-free localization
approach.

4. Autonomous robot navigation
The challenge requires the robots to reach arbitrary free poses in the map (outside and inside the
building) to look for fires and to attack them once detected. We employ a two-stage autonomous
navigation system, consisting of a global and a local planner, in order to deal with this environment.
The Global Planner computes a global path in the map frame. The inputs are the goal to be reached,
the static global map of the environment and the current robot localization given by the localization
approach described in the previous section. The output is a feasible and safe path that should be
followed in order to reach the goal. The Local Planner executes the global path and deals with
dynamic and unmapped obstacles detected by the onboard 3D LIDAR. It takes as input the global
path and a local map built by using the measurements of the onboard sensors. As output, it provides
a free-collision local trajectory to the path tracker module. In the following, we describe the main
techniques for each module.

4.1. Path planning
The application considered does not require precise dynamic motion planning for the vehicle. The
main consideration is to provide safe paths within the workspace, handling the vehicle dynamics in
the path tracker. At the same time, we need fast planning capabilities, as in the case of the local
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planner a new local plan should be generated whenever a new LIDAR measure is obtained (and
therefore a new local map is generated), at an approximate rate of 10Hz.

Different types of approaches for tackling 3D path planning have been proposed in the literature:
discrete search optimal algorithms, sampling-based algorithms and bioinspired algorithms. Related
to the first type, the A* algorithm has been used in several works (Filippis et al., 2012; Sanchez-Lopez
et al., 2019; Zhan et al., 2014). Another algorithm is the Lazy Theta* algorithm, which is based
on the A* algorithm (Nash and Tovey, 2010). The Lazy Theta* algorithm, an any-angle find-path
algorithm, computes shorter paths than the A* algorithm because it does not constrain paths to be
formed by graph edges (to find short “any-angle” paths). Sampling-based algorithms such as RRT
(Rapidly exploring Random Tree) have also been used in path planning (Lin and Saripalli, 2017).
An comparison between A* algorithm and RRT algorithm is done in (Zammit and van Kampen,
2020), both algorithms can be applied in real–time. The advantage of the graph-based algorithms
with respect to sampling-based algorithms is that the computed path is closer to the shortest path,
and the solution is deterministic. Bioinspired approaches imitate the behavior of humans or other
animals, it is worth to mention Particle Swam Optimization (PSO) (Alejo et al., 2014), and also
genetic algorithms (Conde et al., 2012). These algorithms generally require significant computational
resources, and their performance may vary depending on the scenario considered. Considering the
Challenge 3, we need to implement a safe and precise waypoint navigation system which rapidly
plan paths. The Lazy Theta* algorithm presents the most suitable characteristics and is chosen with
respect to other planning algorithms due to its computational load and its high repeteability.

Thus, the path planners are based on the Lazy Theta* algorithm (Nash and Tovey, 2010), a fast
and reliable heuristic planner. However, we have modified the original Lazy Theta* algorithm to
foster safety while still maintaining its good computation time. Algorithm 1 shows the pseudo-code
of the original algorithm and highlights the two modifications implemented (in red).

These two modifications of the Lazy Theta* algorithm have the following effects:

• Cost to reach a node. We added a cost component to the Euclidean distance in the original
algorithm (see lines 33 and 35 of the Algorithm 1). For each node in the grid, this cost is the
distance to the nearest obstacle (dist_obst in lines 33 and 35). Then, the cost to reach a node
is now a sum of the path length and the new cost component for the nodes that define the
trajectory. The latter component is weighted by a factor Cw between 0 and 1. This results in
paths with larger safe margins with respect to obstacles, depending on the value of the weight
factor.

• Line of sight. The line of sight is limited in order to allow the algorithm to link two nodes
only if they are not further than a given distance. Otherwise, the first modification would have
no effect because the original Lazy-Theta* algorithm joins nodes if there is a direct line of sight
between them, regardless of the cost. Thus, a maximum line of sight distance is included, max
in line 38 of the Algorithm 1, allowing the algorithm to link two nodes only if they are not
further than this distance. If this distance is set to∞ then we recover the original Lazy-Theta*
algorithm. This will affect directly the number of expanded nodes.

These two modifications should provide paths with larger safety margins with respect to obstacles
at the cost of exploring more nodes. The quality and the computation time of these paths will depend
on the weight factor and maximum line of sight distance, so the values of these parameters in both
planners should be tuned.

4.1.1. UGV planner
The influence of the two modifications of the Lazy Theta* algorithm has been analyzed in the 2D
planner of the UGV. Figure 7 presents how the weight factor, Cw, and line of sight, LoS, influence
the trajectories computed by the 2D planner. Figure 7-(a) shows the number of explored nodes for
different weight factors and maximum line of sight distances. The number of explored nodes (and
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1 Main()
2 open := closed := ∅;
3 g(sstart) := 0;
4 parent(sstart):=sstart;
5 /* g(s) is the length of the shortest path from sstart to s */
6 /* h(s) is the approximated distance from the goal to the vertex */
7 open.Insert(sstart,g(sstart) + h(sstart));
8 while open 6= ∅ do
9 s := open.Pop();

10 SetVertex(s);
11 If s = sgoal then
12 return "path found";
13 closed := closed ∪s;
14 foreach s′ ∈ nghbrvis(s) do
15 If s′ 6∈ closed then
16 If s′ 6∈ open then
17 g(s′) := ∞;
18 parent(s′) := NULL;
19 UpdateVertex(s,s′);
20 return "no path found";
21 end
22 UpdateVertex(s,s’)
23 gold := g(s′);
24 ComputeCost(s,s’);
25 If g(s′) < gold then
26 If s′ ∈ open then
27 open.Remove(s’);
28 open.Insert(s′,g(s′) + h(s′));
29 end
30 ComputeCost(s,s’)
31 /* Path 2 */
32 /* c is the cost to reach a node */
33 If g(parent(s)) + c(parent(s), s′) + Cw · dist_obst < g(s′) then
34 parent(s′) := parent(s);
35 g(s′) := g(parent(s)) + c(parent(s), s′) + Cw · dist_obst ;
36 end
37 SetVertex(s)
38 If NOT lineofsight(parent(s),s) & lineofsight(parent(s),s) < max then
39 /* Path 1 */
40 parent(s) := argmin (s′ ∈ nghbrvis ∩ closed(g(s′) + c(s, s′)));
41 g(s) := min (s′ ∈ nghbrvis ∩ closed(g(s′) + c(s, s′)));
42 end

Algorithm 1: Lazy Theta* with the introduced modifications in red.

thus, the computation time) augments as the weight factor increases for every value of the line of
sight. This increase takes also place as the line of sight decreases. Figure 7-b shows trajectories
computed with different weight factors and a maximum line of sight distance of 1.5m. The weight
factors 0.15 and 0.3 generate a safer trajectory than the one obtained with the original algorithm
(blue line). This can be appreciated when robot crosses the door.

In order to properly select the right values of Cw and LoS, we have to consider that the
local planner must generate trajectories at an approximate rate of 10Hz to ensure fast planning
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Figure 7. (a): Nodes explored depending on the weight factor and the line of sight. (b): 2D trajectories computed
for the UGV coming into the building (2D map of navigation) by considering different values of the weight
factor, Cw .

Figure 8. Influence of the line of sight and weight factor on the safety margin (top view). The distance cost is
also shown, red area around the building is the area with a higher distance cost. (a) Trajectory computed without
line of sight and the weight factor 0 (original Lazy-Theta*), (b) Trajectory computed considering that line of
sight is 2 and the weight factor 0.3. The base_link frame is the initial position.

capabilities. Additionally, we must choose a good compromise solution between safety and trajectory
length. The chosen values are LoS = 1.5 and Cw = 0.15. It can be seen in Figure 7-(a) that the
computation time considering Cw = 0.15 is smaller than considering Cw = 0.3, while giving similar
results. Although the number of explored nodes doubles those of the original algorithm, it still
ensures the rate for fast planning capabilities.

4.1.2. UAV planner
The same analysis has been performed in the 3D planner of the UAV. Figure 8 illustrates how the
safety is fostered by showing a trajectory computed with the original Lazy Theta* algorithm and
another one considering the modified algorithm with LoS = 2 and Cw = 0.3. The trajectory length
in the first one is 14m and in the second one is 15.6m. This larger trajectory makes the safety margin
with respect to the building to increase during the flight. The closest distance between the building
and the path is 0.5m with the original algorithm. However, the trajectory of the modified algorithm
departs from the building (up to 5.1m away) and the minimum distance, 2.5m, takes place when
the UAV reaches the goal.
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Figure 9. (a) Nodes explored to compute the trajectory with lines of sight from 1.0 to 4.0 and weight factors
between 0 and 1 for each line of sight, (b) Influence of the line of sight and weight factor on the safety margin. The
trajectories considered are the computed in the scenario shown in Figure 8 with the same initial point and goal.

Figure 9(a) shows the explored nodes with different values of the line of sight and weight factors.
The explored nodes decrease as the line of sight increases. Instead, the number of nodes fluctuates a
little with different values of the weight factor. Considering the original algorithm, LoS is not limited
and Cw = 0, the number of explored nodes is much lower, 28,851. Therefore, it is noteworthy how
the modified algorithm influences the number of explored nodes.

Figure 9(b) shows the maximum distance the paths moves away from the building considering
different values of the line of sight and weight factor. In the case of the path computed with the
original algorithm, this distance is always smaller than 2.5m (see Figure 8-a). Instead, the UAV
is always at least 3.5m away as the modified algorithm is used, and even this distance is greater
than 4m as LoS < 3. The highest distances are achieved with LoS = 1. Regarding the closest
the path gets to the building, it is never shorter than 2.5m (distance between the goal and the
building) as LoS < 2.5. This distance is 2.4m for LoS = 2.5 and between 1.7m and 2.4m in the rest
of cases, LoS = 3.0, 3.5, 4. Therefore, safer and smoother trajectories are computed thanks to the
modifications performed. An example is the path shown in Figure 8-b.

Finally, we decided not to enter the building with UAVs in the trials. Although the advantages of
the modified planning algorithm have been shown and the compromise between safety and planning
capabilities can be reached, this decision guaranteed safety because the closest distance to the
building would be the distance of the inspection points to the facade. For this reason, in the
competition we did not limit the line of sight neither consider the distance cost, Cw = 0, in the 3D
planner. This allowed us to maintain the fast planning capabilities of the 3D planner.

4.2. Path tracker
The Path Tracker module computes the velocity commands to navigate and follow the trajectory
computed by the Local Planner in both platforms. The UGV makes use of a pure pursuit (PP)
(Kelly, 1994; Park et al., 2014) controller that adapts the angular velocity of the robot to reach the
closest point into the commanded trajectory. The main idea of PP is to calculate a real-time target
waypoint (WP) which lays in the target path and is situated at a look-ahead (L) distance from
the vehicle. When applied to non-holonomic robots, PP generates a commanded heading change
∆θ = arctg(y/x) that is necessary to make the robot point towards WP, where x and y are the
coordinates of WP in the reference frame of the robot.

On the other hand, the UAVs make use of the command velocity interface provided by the DJI
software. This interface allows commanding linear velocities in X, Y and Z axes, and angular rates
in yaw. A saturated proportional controller (see Figure 10) has been implemented to follow the
commanded local trajectory in the UAVs. This control scheme gives us a trapezoidal velocity profile
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Figure 10. (a) Basic control scheme of the path tracker implemented on the UAVs.

Figure 11. Top view (a) and 3D view (b) of the global planned trajectory (green line) and its associated executed
trajectory, as estimated by our localization system (red line) during a flight of the DJI Matrice M210 in the second
trial for Challenge 3.

in each axis in order to reach the current destination waypoint while ensuring convergence to the
final destination as we have a first order system.

4.3. Experiments
Figure 11 presents the trajectory followed by the M210 UAV in one experiment, in red, alongside
with the global planned trajectory in green. As we use a local planner in order to check for unmodeled
obstacles on the environment, the tracking of the trajectory on the horizontal plane is not perfect
and it tends to take shortcuts on the corners whenever possible. On the other hand, the system
follows the altitude reference more closely.

The 3D planner obtained a remarkable performance that allowed us to perform all experiments
during the MBZIRC competition without any collisions. The computation times of the global plan
is of less than a second in its onboard NUC7i7 and using a single core. On the other hand, the local
planner computes trajectories at 7Hz approximately which ensures fast planning capabilities of the
3D local planner.

5. Fire perception and extinguishing
Our approach for the fire extinguishing task in the MBZIRC - Challenge 3 consists of two modules:
a perception module that detects fires and estimates their positions with a thermal camera; and an
extinguishing module that attacks the fire by dropping a blanket or ejecting water.
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Figure 12. (a) Simulated ground fire, colored temperature image and segmentation using the radiometric values
(the circle shows the mean position of the fire). (b) Simulated facade fire, colored temperature image and
segmentation using the radiometric values. The original temperature image gets saturated, while working with
the radiometric field allows for a detailed segmentation.

5.1. Fire perception
The module of fire perception detects fires within the scene using as input the data from a thermal
camera. As output, it indicates if a fire has been detected, as well as its 2D coordinates on the image
plane and 3D coordinates in the scenario.

All fires in the competition were simulated using a thermal heated plate that reached temperatures
up to 110º. The fires on the facades featured additionally a real fire using gas, while the remaining
fires were also visually simulated by using red silk.

In our solution, we aimed for a fully infrared-based detection of the heat source. Thus, the main
sensor for fire perception is the miniature infrared thermal camera from Seek Thermal mentioned
above. The camera can detect temperatures between -40º to 330º Celsius. We forked a ROS driver
from ETHZ and made additional modifications7. The driver provides a grayscale temperature image,
as well as a radiometric map.

Fire detection is carried out by analyzing the images provided by the infrared cameras. A
calibration procedure transforms the raw radiometric data obtained by the cameras to temperature
ranges. While obtaining absolute temperature values from radiometry is a very complex process,
dependant on the material emissivity (for instance, a metal can radiate less IR energy for the same
temperature than other materials with larger emissivity), atmospheric attenuation, and many other
factors, here we are more interested on clear relative temperature differences, which simplifies the
calibration procedure. The calibration is performed for the different kind of fires once. Then, given
the clear difference of temperatures between the fire and the surroundings, a thresholding operation
is performed to segment the fire pixels. As a result, the fire detection module provides coordinates
on the image plane of fire spots. Figure 12 shows detection results obtained during the competition.
During the competition, no false positives were generated by using the method.

5.2. Fire position estimation
The fire segmentation results are used for the visual servoing final approach to extinguish the fire (see
Section 5.3). However, during the exploration of the scenario we need to estimate the 3D position
of the fire spots to plan the approximation goals for fire extinguishing.

It is not possible to the estimate the 3D position of the fires from the fire position in pixel
coordinates, as there is no information about the range. In order to obtain the distance to the fires,
the LIDAR information is considered. The LIDAR values are mapped to the image coordinates given
the known static transformation between sensors and the camera internal calibration. This way we
can associate the fire object to a LiDAR range measure, obtaining an estimation of the distance to
the fire. This is not always possible given the resolution of the LIDAR (and depending on the actual

7 https://github.com/robotics-upo/seekthermal_ros
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distance to the fire). If no range information is available, the range is estimated according to the
3D map of the environment. For the fires located on the floor, the height of the UAV is considered
to estimate the position of the fire.

Each 3D measurement is associated with a covariance matrix that reflects the uncertainty on
the range, which is adapted according to the estimated range (when no range is available, a large
uncertainty is associated to it), and other aspects like the position of the robot. Then, an Information
Filter is used to fuse in time the measurements about the position of the fire from different view
points in order to triangulate the fire position, as in our previous work (Dias et al., 2015).

5.3. Fire extinguishing
This module is in charge of confirming the fire presence, aiming adequately the extinguisher system,
and releasing the water or the blanket. The module assumes that the robot is already located at
an attacking distance to the fire. Three tasks should be accomplished separately in each robot:
confirming, centering and extinguishing.

5.3.1. Fire extinguishing with UGV using water
The confirming phase is done by scanning with the Pan&Tilt unit onboard the UGV to look for
the precise position of the fire. To this end, we command a predefined trajectory to the pan and tilt
unit using position commands. At this point, the Fire Detection module is activated.

Whenever the Fire Detection module confirms a fire, the centering phase use a velocity visual
servoing proportional controller to command the Pan&Tilt unit joints. The error signal is the pixel
difference between the detected fire position on the image plane and the center of the locked-on
target zone. We have empirically defined this zone in such a way that the water ejecting mechanism
hits on target. This zone is indicated in an area of the image and it depends on both the height and
distance to the target.

Once the extinguisher has locked on the fire, the extinguishing phase begins, and the system
ejects water. As a final note, it is difficult to perceive the trajectory of the water with the onboard
sensors. Thus, to increase the chances of successfully hitting the target, the pan&tilt unit performs
a cross-shaped movement while ejecting water during 60 seconds.

5.3.2. Fire extinguishing with UAV using water
To extinguish the fires on the facade, once the UAV is positioned in the attack position, the UAV
first performs a manoeuvre to confirm that there is a fire in the area (to compensate for imprecision
on reaching the fire-attack point or on the estimated 3D fire position). This manoeuvre consists of
performing a square motion parallel to the facade of the building.

As soon as a fire is detected the square sequence stops. We use a proportional velocity controller
in the local Y and Z axes of the UAV so that the detected position of the fire on the image plane
enters into the locked on target zone. As in the UGV case, we have empirically defined the locked
on target area on the image assuming a distance of attack to the fire. Once the fire is on the locked
on target zone, the water ejecting starts. As the UAV can be subjected to disturbances while flying
which may cause the UAV move outside the lockup zone, the velocity controller keeps regulating
the position during the ejection.

Figure 13 presents an example from the competition (during the Grand Challenge). It shows the
output of our control system as a function of the coordinates of the centroid of the detected fire
region on the thermal image. This control system sends velocity commands to the M600 autopilot
in order to center the fire in the image. This particular fire was subjected to lateral wind gust of
up to 8 m/s. It can be seen in Figure 13 how this provoked oscillations in the control in the lateral
velocity, making it difficult to adequately point the water hose. The fire was never completely lost
during the water ejection and the fire was considered partially extinguished.

For the fires inside the building, as before, first the drone starts a fire confirmation sequence. In
this case, to prioritize the safety of the platform, the maneuver consists only of yaw rotations in
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Figure 13. Facade fire extinction with an UAV using water. (a) The thermal camera is used to detect the
fire. The 3D position of the fire is estimated by using the LIDAR information and tracked using an Information
Filter. (b) Visual servoing for extinguishing. Top: commanded UAV speeds generated by the control system on y
(horizontal UAV body axis, parallel to the wall, blue) and z (vertical UAV body axis, red). Bottom: u (columns,
green) and v (rows, orange) image coordinates of the centroid of the fire detected on the image. The u and v
target coordinates are plotted in pink and light green, respectively.

place. If a heat trace is found, then a proportional velocity controller in yaw is executed to center
the fire horizontally on the image plane. When this is achieved the water ejecting starts, keeping
the controller for correcting disturbances.

5.3.3. Fire extinguishing with UAV using blankets
In this case the UAV performs a confirming fire manoeuvre similar to the one done for facade wall
fires, but this time the UAV moves in a plane parallel to the ground. As the blanket must cover
the fire, the extinguishing action is more convoluted. Once the fire is confirmed on the image, the
UAV is placed just above the fire. Then the drone descends to be more accurate when dropping
the blanket. Afterwards, the UAV moves backwards until the fire is out of image and stop. Just in
that moment, two electromagnets from the extinguishing system switch off to unroll the blanket.
From there, the UAV moves forward passing throw the fire, and so detecting the fire again with
the thermal camera. The UAV will continue this movement, over passing the fire, and just when
the thermal camera stop detecting the fire, the last four magnets will switch off and so the blanket
drops covering the fire. From there, a fast move upward is performed in order to avoid any collision
with the deployed blankets.

6. Mission Executive and Multi-Robot Coordination
6.1. System architecture and atomic tasks
All former components need to be integrated and work jointly to achieve the missions of the
Challenge. This integration relies on the ROS framework, using the ros-kinetic distribution under
Ubuntu 16.04. The algorithms described above have been implemented as ROS nodes.

The basic architecture of the system is shown in Figure 14. Continuous data flows between
nodes are implemented through ROS topics. Some of these nodes also provide atomic tasks that
will be composed to create the whole missions. As abstraction for such tasks, we employ the ROS’
actionlib package8, which offers a simple interface to preemptable tasks. In particular, we use

8 http://wiki.ros.org/actionlib

Field Robotics, March, 2022 · 2:241–273

http://wiki.ros.org/actionlib


An aerial/ground robot team for autonomous firefighting in urban GNSS-denied scenarios · 261

Robot ROS Driver

Map Navigation

GoToGoal TakeOff Land

Odom + 
Localization

Fire
Detection

FireDetection3D

Fire
Extinguishing

FireExtinguish

BT Mission
Execution

6DoF Pose

IR

Fire Image
Coordinates

LIDAR

Velocity
Commands

Velocity Commands

ExecuteTree

Velocity Estimates
GPS

Robot i

Robot j

Central Station

LIDAR
LIDAR actionlib server interface

actionlib client calls

topics

Figure 14. A depiction of the architecture. Each robot has operational autonomy to execute missions, and all
processing takes place onboard, where all the enclosed modules enclosed run. A central Control Station can order
the robots to execute missions through the BT Mission Execution node.

Table 2. Atomic tasks that can be carried out by each robot. Actionlib interface, parameters required, potential
final status, and final result reported.
actionlib Params Final Status Result
TakeOff Height CANCELLED if vehicle not ready

SUCCEEDED if height reached
ABORTED if height cannot be reached after takeoff

None

Land None CANCELLED if vehicle already landed
SUCCEEDED landed
ABORTED if the UAV cannot land

None

GoToGoal
(Section 4)

Waypoint (WP) CANCELLED if no path to WP
SUCCEEDED if WP reached
ABORTED if WP cannot be reached

None

FireDetection3D
(Section 5.1)

Duration SUCCEEDED if fire found within the given duration
ABORTED if fire not found

3D position of fire

FireExtinguish
(Section 5.3)

None SUCCEEDED if fire can be locked on
ABORTED if fire cannot be locked on

None

the task model offered by the SimpleActionServer implementation (actions can be ACTIVE when
running; SUCCEEDED when successfully finished; CANCELED if they cannot be processed; ABORTED if
they cannot be completed; finally, actions can be also PREEMPTED by the client). The list of atomic
tasks considered by each robot are shown in Table 2. These tasks are the same for all robots, but
of course they have specialized implementations depending on the robot (for instance, TakeOff is
not applicable to the UGV, and the FireExtinguish action has the three variants described in
Section 5.3).

6.2. Mission definition and execution
Given the atomic tasks that can be carried out by the modules described in the former sections,
we need a framework to define whole missions as plans that combine those tasks, and a mechanism
to execute and supervise the defined task plans. This mechanism is the mission executive, which is
a fundamental component to allow the robots to have operational autonomy (Gancet and Lacroix,
2007; Molina et al., 2020). A popular example of executive is the ROS SMACH system (Bohren and
Cousins, 2010), which uses nested Finite State Machines (FSM) to represent and execute high-level
plans.

In our case, we employ Behaviour Trees (BTs) (Colledanchise and Ogren, 2017) as the framework
for mission definition and execution for the robots of the team. They are an alternative to FSMs
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that offer advantages in terms of modularity and reactivity. First originated as a tool for Non-Player
Character (NPC) AI development in the video game industry, BTs are becoming widespread in
robotics, mainly due to its modularity and simplicity (Colledanchise and Ogren, 2017; Paxton et al.,
2017; Colledanchise and Ögren, 2018), including their use to define behaviours for UAVs (Ogren,
2012; Molina et al., 2020).

While a full description of the BT framework is out of the scope of this paper, here we summarize
its main elements. BT model behaviors as hierarchical trees made up of nodes (an example can be
seen in Figure 16). Trees are traversed from top to bottom at a given tick rate following a set of
well-defined rules and executing the tasks/commands associated to the nodes that are encountered
while doing so. Nodes’ statuses are reported back up in the chain and the flow changes accordingly.
A status can be either SUCCESS, FAILURE or RUNNING. According to their functionality, nodes can
be classified as:

• Composite: it controls the flow through the tree itself and are similar to control structures in
structured programming languages.

• Decorator: it processes or modifies the status it receives from its child.
• Leaf : this is where the actual task is performed, the atomic tasks that the robot can carry out,

or other functionalities. As such, these nodes cannot have any children.

As it can be seen from the classification above, BT decouple logic from actual tasks in a natural
way. When developing a tree, one only should care about the leaf nodes. In this case, these leaves
correspond to the actionlib tasks described just above and another potential operations. The flow
can later be defined and re-arranged constantly, creating new behaviors and expanding on what is
already done. This modularity and composability (due to the hierarchical nature of the trees) of BTs
with respect to alternatives like FSM is one of the advantages of the formulation (Colledanchise
and Ögren, 2018), and was very relevant for defining the missions in the fleet and adapting to the
lessons learned during the rehearsals. Missions could be re-defined very fast, and behaviours could
be developed in parallel and easily integrated as sub-trees in more complex missions once well tested
and validated.

The behavior of the individual robots of the team in the Challenge are designed using BTs. The
mission executive that carries out and monitors the mission defined as a BT uses a BT engine. We
have employed a publicly available BT implementation9. We have developed a ROS plugin for this
engine. It ships with a library containing ROS subscribers, publishers, services and actionlib leaf
nodes (mapping adequately the states of these actions to the corresponding states for the nodes BT)
to be able to send and receive messages, and call services/actions to/from other nodes running in the
network. And it includes a BT Mission Execution ROS node that offers an additional interface (as
an actionlib as well) to load, start and stop user-defined behavior trees. This node (see Figure 14)
runs onboard each robot, providing them with full operational autonomy to carry out complete
missions.

6.3. Cooperation and Coordination
The approach to Challenge 3 takes advantage of the use of a heterogeneous robot team (mixing
UGV and different types of UAVs). On the one hand, each robot specializes on one of the tasks for
the Challenge. This means that we consider a loose cooperation between the robots. In particular,
we devote the ground robot for the ground floor indoor fire, and each UAV to a different facade
(with the larger M600 for the outside fires and the facade closest to the outside fires).

The Control Station module (see Figure 14) commands the different robots to execute out their
missions, and those are carried out autonomously by each robot. Each robot runs all modules

9 https://www.behaviortree.dev
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Table 3. Results obtained during the MBZIRC 2020 competition. All tasks were achieved in autonomous mode.
Maximum score for a task is by putting 1 litre or covering 100% of fire.

Outdoor Fires with
blanket (Weights: 10 UAV,
5 UGV)

Facade Fires with UAVs
(Weights: 14 ground floor,
8 first and second floor)

Indoor Fires (Weights: 24
second floor, 16 first floor,
10 ground floor) Score

TRIAL 1 1 fire, UAV. 50% covered None None 5
TRIAL 2 None None Ground floor, UGV. 350 ml 3.5
GRAND N/A Ground floor fire, under

wind, UAV. 8 ml
Ground floor, UGV. 3 ml 0.13

onboard, including a different ROS master node. We use the software described in (Tardioli et al.,
2019) to share between robots only vital information through the wireless network, including the
position of each robot and the interfaces to control the robots from the station.

Thus, the main aspect to consider is the coordination in time and space to avoid collisions. The
task allocation mitigates the risks, as the different vehicles will operate in different facades and,
thus, different spaces. In any case, it is important to avoid close encounters between the vehicles.
The takeoff zone is very narrow, so the Control Station regulates the order of initiating the missions
for each vehicle so that no two UAVs take off at the same time. Furthermore, each vehicle has a
landing zone that is separated from the rest of the team.

7. Experiments and Results
This section summarizes our performance during MBZIRC 2020 We focus on the results obtained
by the integrated system as a whole summarizing high-level actions. For a detail on the performance
of the individual systems, please refer to the previous sections.

The complete, integrated multi-robot system competed three times in Challenge 3. Twice during
the main competition and once more for the final, Grand Challenge (please refer to Section 7.3).
The result obtained in the competition are presented in Table 3. We scored in all trials (see Table 3),
always in autonomous mode, and scored target hits on facade fires and both indoor and outdoor
fires. We also managed to autonomously operate a team of three robots at the same time. With
these results, we achieved the seventh place in Challenge 3 (out of 20 teams in the competition) and
the fifth place in the Challenge 3 entry to the Grand Challenge (out of 17) in our first participation
in the competition (contributing this way to an overall third place in the Grand Challenge for the
team). The results reflect the complexity of the challenge. A video highlighting results from the
MBZIRC competition can be accessed at https://youtu.be/sx9R-6JrfQA.

7.1. Trial 1
In this trial the ground robot SIAR was tasked to seek and extinguish an interior, ground-floor
fire, while our M600 UAV was tasked to extinguish one outdoor fire with the blanket and then one
facade fire with water. We encountered technical issues that prevented us from flying with the M210
platform. In contrast, our M600 platform did perform very well. It was able to successfully deploy a
blanket which partially covered an outdoor fire. Figure 15 shows the timeline of the most important
events during the first trial.

The mission definition for the M600 robot as a BT is presented in Figure 16. The UAV takes
off (UPOTakeOff block) after a timeout (to wait for the ground robot to be at a safe distance; t1
in Figure 15). Then, the fire-blanket mission proceeds, represented by the FireOutsideMission
sub-tree. Figure 16 (b), shows the elements of this sub-tree. First, the Parallel composite node
executes in parallel a path to explore (OutsideExplorationPath, which uses the navigation actions
of Section 4) and activates the UPOFireDetection3D action of Section 5.1. Once one of the two
nodes returns SUCCESS (either because a fire is detected or the exploration path is finished), the
Parallel composite returns SUCCESS (FAILURE otherwise).
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Figure 15. (a) Trajectories of the 2 robots employed in Trial 1. The M600 UAV and the UGV SIAR trajectories
are depicted in green and magenta, respectively. The labels indicate the timestamps when the main events
occurred. (b) Task performed by each robot with the corresponding timestamp.

Figure 16. (a) General tree of a (simplified) BT for the M600 mission. The robot is tasked to put out an
outside fire and then a fire on the left the facade of the building. The Sequence composite node executes the
leafs from top to bottom. If a node returns FAILURE, the whole mission fails. Leaf nodes FireOutsideMission,
LeftFacadeMission and GotoAndLand are sub-trees. (b) FireOutsideMission sub-tree.

In the M600 Trial 1 mission, the exploration path is followed until t3 in Figure 15. The leaf
node CheckBool returns SUCCESS as the variable fd_found is TRUE. This means that a fire has
been detected by the module, and its estimated coordinates are stored at (fd_x, fd_y, fd_z). Then,
the UAV is commanded to a fire-attack position 3 meters above the fire’s coordinates (computed
using the MathOperationFloat leaf), by calling to the corresponding UPOGoToGoal (Section 4).
Once there, the extinguishing procedure with the blanket is activated (UPOFireExtinguish, Section
5.3.3.3). The blanket is successfully deployed at time t4, covering 50% of the fire. Figure 17 depicts
the main steps of the fire blanket mission for the M600 UAV, as described in Figure 16.

After the blanket mission, and regardless of its outcome (determined through the ForceSuccess
decorator), the M600 proceeds to the facade fire extinguishing sub-mission. This sub-mission
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Figure 17. Data from one blanket deployment task of M600 UAV. (a) An exploration path is given and the
methods of Section 5.1 are used to detect and to estimate the 3D position of the fire. Then, the blanket
deployment manoeuvre is carried out. (b) Exploration phase. (c) Blanket deployment phase.

(LeftFacadeMission) is very similar to the FireOutsideMission described above (see Figure 16,
b)), with different parameters. The main difference is that the exploration path comprises a set of
waypoints that cover the entire facade, with the UAV oriented towards it. The second difference is
that the frontal IR camera is used, and, when a fire is detected, a fire-attack waypoint is generated
2.5 meters in front of it. Finally, the UPOFireExtinguish task is called with the specialized version
of Section 5.3.2.2.

In normal conditions, after the exploration and regardless of the result of the facade mission
(through the second ForceSuccess), the robot will go back to the home position. In this case,
however, the mission was interrupted at t6, when we asked for a reset to replace the deployed
blanket and to start the UGV, instead of waiting for the full exploration of the facade.

After the reset (at t7), we assigned the M600 the same mission with a different exploration path
to find the second fire outside, but the blanket was released accidentally just after take off, as the
magnetic gripper failed, so we requested a second reset. The UGV SIAR proceeds to its mission
(described in detail in Trial 2), but it can only explore one point inside the building (t11) before
the trial time runs out.

7.2. Trial 2
In Trial 2, we included our second UAV, M210, and tasked it to attack a fire in a different facade of
the building. As before, the ground robot was tasked to look for and extinguish the interior, ground
floor fire, and the M600 was tasked to extinguish one outdoor fire with the blanket and one facade
fire with water. Figure 18 shows the general evolution of Trial 2.

After Trial 2 takeoff, the M600 unfortunately dropped its blanket due to a magnet malfunction.
A reset was called and then the UGV SIAR was able to carry out its mission successfully. Figure 19
presents the mission of SIAR. First, the UGV is commanded to enter the building, which occurs
at timestamp t2 in Figure 18. Then, the Floor0SurveyAndExtinguish submission is activated.
It consists of inspecting two different points using the CheckFireAndExtinguish sub-tree (see
Figure 19, b and c). When a inspection point is reached, the block UPOFireExtinguish is called.
The onboard, infrared, thermal camera checks whether a fire exists using the procedure of Section
5.3.1. If no fire is present, the module returns FAILURE (this result occurs, correctly, as there is
no fire at the first inspection point between times t5 and t6). Otherwise, first a centering action
is performed and finally the fire extinguishing system is activated to deploy 1 litre (see Figure 20,
a). This latter action occurs at the second inspection point (between times t9 and t10). Figure 20
shows the UGV extinguishing this indoor fire during Trial 2. We successfully dispensed only 350 ml
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Figure 18. (a) Trajectories of the 3 robots employed in Trial 2. The M600 UAV was tasked with extinguishing
an outdoor fire (green trajectory). The M210 UAV was commanded to extinguish a fire in the opposite facade
of the building (black trajectory). The UGV SIAR was commanded to look and extinguish the indoor fire in the
ground floor (red trajectory). (b) Task performed by each robot with the corresponding timestamp.

Figure 19. a) General tree of a (simplified) BT for the SIAR mission to put out one fire on the ground floor of
the building. b) Subtree Floor0SurveyandExtinguish. c) Subtree CheckFireandExtinguish.

on target from the whole liter, because of a small misalignment of the water ejector and the thermal
camera. The mission is not designed to deploy all the water on the UGV, allowing it to repeat
exploring the environment for more fires and compensate for potential false alarms. This limitation
out to be too conservative, as the system was actually capable of detecting the real fire present and
no false alarms were created.

After the UGV put out the inside fire, a new reset is called (in time t11) to initiate the UAVs.
The M210 takes off first at t12 and is sent to explore the farthest facade. 20 seconds later, at t13,
the M600 takes off. The M600 is tasked the same mission as in Trial 1, with a change in the order of
the exploration path waypoints to add a safety buffer with the M210 UAV. In this case, the outdoor
fire is again correctly detected and located, and the blanket is deployed (at t18), but misses the
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Figure 20. Fire extinguishing action performed by the UGV in Trial 2. (a) Snapshot of the video recorded by
the organization in the extinguishing action. The amount of water poured in can be seen below. (b-up) Internal
state of the SIAR and FOV of the thermal camera. (b-bottom) Detected fire on the IR image. (c) The upper
plot represents the pan and tilt velocity commands on blue and red lines, respectively. In the bottom plot, the
image coordinates are plotted in light green and orange, respectively.

Figure 21. (a) Trajectories of the M600 (green and yellow) and SIAR (purple and black) in their first and second
missions, respectively. (b) Task performed for each robot with the corresponding timestamp.

target by a few centimeters. We actually increased the height at which the deployment manoeuvre
was performed from Trial 1 to 2 to add some safety buffer, and this ends up being detrimental.
There is no further time to undertake the facade part of the M600 mission.

The M210 is able to explore part of the facade looking for the fires (t16 until t21). However, we
ran out of time during Trial 2 before it could detect any fire. Please notice that this mission is the
same as the M600 facade sub-mission described above, changing the exploration path waypoints.
This comparison illustrates one of the main advantages of using BTs: Modularity allows reusing BTs
from different platforms with minimal changes.

7.3. Grand Challenge
In the Grand Challenge, a reduced version of the three MBZIRC Challenges are carried out at the
same time. Regarding Challenge 3, the fires to put out with a blanket are eliminated. There is also
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a limit in the number of robots for tackling all challenges, and thus we could only use our M600
platform and the UGV. The total amount of time was raised from 15 to 25 minutes, but resets are
global to all challenges.

Figure 21 shows the main events that occurred during the Challenge 3 entry to the Grand
Challenge. The mission for the M600 drone is a stripped down version of the mission in Trials 1 and
2, eliminating the blanket deployment (again, this was very easily carried out given the composition
of the associated BT). In contrast to the experiments in Trial 2, in this case our M600 drone manages
to partially extinguish a facade fire. After a first reset at t4 (due to other of the three Challenges),
the M600 follows an exploratory path until it detects an active fire with its thermal camera on front
at t8. As soon as it detects the fire, it switches into fire-centering mode and starts to eject water to
extinguish it (see Figure 13). This particular fire is given larger weights for the scoring system as it
was subjected to lateral wind gusts of up to 8 m/s.

Regarding the UGV platform, the mission is the same as before, with the main change of deploying
the whole tank of water and returning to home position instead of searching for the remaining fires.
The UGV does not perform as well as in the previous day, as the navigation system gets stuck
when trying to enter in the building at timestamp t7. Since requesting a reset affects and stops
every challenge, it is necessary to wait for the opportune moment and coordinate the whole team
to intervene the platform and restart its system.

Later, at time t12 we reinitialize the UGV and thus finally complete the second mission success-
fully The UGV heads to the first inspection point, and then it executes the searching phase (Section
5.1) looking for fire at time t14. As soon as it detects the fire (located at a different point than the
previous day), the centering action is executed (t15) and the UGV is able to partially extinguish
the fire on the ground floor. Unfortunately, the time expires only a few seconds after the start of
the extinguishing procedure (t16), and thus only a small quantity of water is deployed on target.

8. Conclusions and Lessons Learned
We present in this article our entry to tackle MBZIRC Challenge 3: “Team of Robots to FightFire in
High Rise Building", using a cooperative, multi-robot framework. Our system achieved the 7th place
(same score as 6th, longer mission time) in Challenge 3 and third place in the Grand Challenge of
the team. The difficulty of this Challenge can be seen in that only nine teams were able to score in
autonomous mode during the two trials of Challenge 3, and only five teams during the Grand Finale
trial of the same Challenge 3. We managed to score in autonomous mode in all three occasions. While
the system and techniques presented in the paper were developed with the MBZIRC challenge in
mind, we believe the localization, navigation and mission executive can be adapted and applied to
other urban scenarios.

Nevertheless, our system did not prove as robust as we expected, and some other teams fared
better. Some of the lessons learned are presented here:

8.1. Hardware matters
In a robotics competition, software obviously matters, but hardware selection and design decisions
are key. Our use of off-the-shelf platforms was a good decision, in particular for the drones. Platforms
we selected offered a ready to fly system with direct ROS integration. This choice opened the
door to focus on the software-development tools required for the robot autonomy, significantly
reducing the issues and problems with integrating hardware into drones. It is also worth noting that
we experimented with DJI software issues before and during the competition: onboard firmware
mismatch problems, random GPS no-fly area restrictions, and motor overheating. Nevertheless, all
in all, we consider that the advantages of using a commercial off-the-shelf drone platform was a
good decision and that itis, in general, preferable to avoid the design/implementation of custom
drones in order to focus on autonomy problem. The platforms were adapted for the water-spraying
and blanket-deploying systems. The results could have been improved by more robust hardware
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adaptation. While all in all the water ejection mechanisms were adequate, pumping at higher
pressure would have improved accuracy. Regarding the blanket deployment mechanism, while we
were able to deploy the blanket on the fire once, it was affected by the air turbulence generated by
the own UAV, which situation led to some blanket drops, as described above. Finally, our ground
robot used a pan-and-tilt mount, for budget and weight reasons, whereas most teams used an arm.
The use of an arm clearly helps in the final extinguishing maneuver.

8.2. Versatile localization
Using a map-based localization system allowed considerable versatility, even permitting us, finally, to
discard GPS. This approach allowed fast system deployment, so that we did not need a precise GPS
localization to localize the robot into the map, just the minimum required by the DJI drones to take
off safely. The localization had a stable performance and a good precision during the competition,
relying only on the use of LIDAR measures that were matched against a 3D map obtained a priori.
It also was very important in order to be able to safely navigate in the scenario, as the localization of
our platforms was performed taking into account the different elements on the stage, e.g. columns or
safety nets, allowing us to locate them with good precision against the obstacles in the environment.
The localization supported the robot autonomous navigation in the scenario, and the map-based
system made the indoor-outdoor transition on localization seamless. However, only the ground
robot entered the building. Even though we performed missions with the drones inside the building
in simulation, finally we did not attempt to enter the building during the competition. This latter
task was one of the most challenging ,and no team was actually able to score inside the building
during the competition, and only some manual trials were performed. Such missions clearly require
techniques with a higher level of maturity.

8.3. Local operational autonomy
Robot local autonomy was also key. Each robot was able to carry out its mission with all processing
onboard, the central station only in charge of launching the local missions of the robots in adequate
order and relaying some global information. Even under communication dropouts, the robots were
able to carry out their missions. The use of BTs as a mission executive on board the robots offered
us also a great flexibility in designing and composing missions on the basis of the atomic tasks
and sub-behaviours already defined. The BT engine also allowed the robots to react to the events
detected during the runs.

8.4. Rapid and robust deployment
System robustness is critical to operating several robots at the same time. During trials, preparation
time was very short. While we were able to perform missions with three robots at the same time,
the system start-up was not robust enough to fully utilize the 15-minute mission limit. While the
system can operate under communication dropouts, communication with the robots was needed to
start them and, some times, delays in the starting sequence caused by communication problems
prevented achieving more tasks in the mission. However, we feel that we are moving in the right
direction and we look forward to subsequent competitions to improve the robustness and accuracy
of our systems and to, hopefully, win the challenge!
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