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Abstract: We present a final overview of the efforts by the Naval Air Warfare Center Weapons
Division (NAWCWD) and the Jet Propulsion Laboratory to automate the operation of the largest
fleet of autonomous maritime vehicles. The vehicles are intended for large-scale demonstrations
and tests of US Navy systems or tactics. This review covers a preexisting distributed architecture
for human-in-the-loop control of several autonomous high-speed boats with a main focus on the
planning, formation assignment, and formation switching pipeline. Algorithm capabilities are de-
scribed and validated in simulation and field tests using real-world vehicles. Theoretical lower bounds
on the time required to change formations are also derived and used to bound our experimental
performance. We are able to present data from the 2019 “final exam” that pitted this architecture
in a head-to-head competition, which was won after a perfect run with no hazardous maneuvers
recorded under autonomous control. The effort concluded successfully on December 31, 2020, with
the delivery of code and documentation after successful integration and testing exercises in 2019
and 2020. We conclude the paper with discussions of limitations, extensions, and suggestions for
future work.
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INS  Inertial navigation system

NAVAIR Naval Air Systems Command

PCCU Portable Command and Control Unit

RHIB Rigid hull inflatable boat

SeaCAN Network of all nodes on boats, all operator stations
STEB Seaborne Targets Engineering branch of NAVAIR
USV  Unmanned surface vehicles

Symbols

U Bounds on control

A Mapping of vehicles from current position to desired formation points
c(-)  Cost of formation switch

M Makespan, or total time of convergence for a formation switch

My Model of virtual leader dynamics

N Number of boats or vehicles in autonomy group

0; Vehicle i’s spatial offset from virtual leader position

P; Path of vehicle ¢ given by set of positions indexed by time

Tis Stage s safety radius for vehicle 4

t; time required for boat 4 to reach its goal formation trajectory

trLB lower bound on time required for a boat to reach goal formation trajectory
U; Vehicle i’s control sequence indexed by time

Uy Virtual leader’s speed and heading

X Set of vehicle positions

Xr Moving formation position of point ¢ given by model

T; Position of vehicle ¢

Ty Position of leader, may be virtual

Y Set of formation positions

Yj Position of formation point j

1. Introduction and Objectives

Two decades ago, in the year 2000, a small boat laden with explosives collided with the USS Cole,
killing or wounding dozens and critically damaging the ship. Since then, there has been increasing
use of small, high-speed boats, especially in large numbers, against commercial or military ships,
either as bombs or to intercept commercial vessels such as oil tankers or harass military escorts. This
mirrors the threat predicted by the 2002 “Millennium Challenge,” a large-scale combat exercise that,
somewhat controversially, highlighted the threat of large numbers of small, highly maneuverable
vehicles.

In response, the need for intelligent simulation of small, maneuverable, and swarming threats has
never been greater. The Seaborne Targets Engineering Branch (STEB), as part of Threat/Target
Systems Division of the Naval Air Warfare Center (NAVAIR), has been converting small vehicles
into remotely controlled targets to support US Navy operations testing for the past two decades.
As part of their ongoing development in Port Hueneme, California, STEB maintains the largest
fleet of remote-controlled aquatic vehicles in the world. To accommodate new and developing threat
models, reduce operator requirements, and modernize for robotics research, STEB partnered with
NASA Jet Propulsion Laboratory to build autonomous and semi-autonomous capabilities into the
vessels deployable in low-cost, off-the-shelf computing platforms.

The primary goal of this collaboration is to increase the number of vehicles simultaneously
commanded by a single driver, with the eventual goal of fielding a fully-autonomous “red team” for
test and evaluation of tactics and systems against a fast-moving, asymmetric opponent. After three
years of rigorous, single-blind competed testing, the system was selected against other competitors
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Figure 1. The High-Speed Maneuvering Surface Target (HSMST).

and is entering deployment. This report presents the high-level details of the program’s output.’
The paper is focused on the High-Speed Maneuvering Surface Targets (HSMST—Figure 1).?

We organize the paper as follows. In Section 3, we overview the existing systems employed by
STEB. The system has been in operation for over 20 years and has a long legacy and robust modular
architecture which is being modernized as part of this effort. We discuss the required autonomous
capabilities and the design for human-in-the-loop operations in Section 4 and our implementation of
those capabilities as a path-planning pipeline in Section 5. We describe our analysis techniques and
analytical benchmarks in Section 6. In Section 7, we show the resulting capabilities in simulation
tests. In Section 8, we present field testing results from 2019, which are also compared against the
derived analytical results and simulation tests. Finally, in Section 9, we discuss limitations, our
major lessons learned when designing and deploying the system, and preliminary ideas for more
advanced capabilities that might be of interest to the community.

The goal of this paper is to (1) communicate to the community some of the challenges we
encountered associated with developing an “autonomy controller” for an established system that
sees regular use; (2) present the thoroughly vetted motion planning and formation control pipeline
details that should be of general interest; and (3) provide insights into testing mechanisms and
processes that helped us.

2. Related Work

Multi-agent unmanned surface vehicle (USV) studies have industrial, commercial, and military
applications, and range in number of agents, scale of field experiments, choice of control algorithms,
platform architecture, and degree of human interaction (Rowley, 2018; Zhang et al., 2015; Zereik
et al., 2018). In the presented work, we focus on performing field experiments of various formations at
high speed, with an explicit human-in-the-loop protocol to guide formations with a virtual leader.
We use a deterministic approach for formation position allocation and employ model predictive
control to determine formation-relative control sequences for fast convergence. We employ obstacle
avoidance using optimal reciprocal collision avoidance (ORCA) to ensure that all controls are
ultimately collision free. Therefore, in this section, we review the related efforts at automating
collaborating maritime vehicles that span the three general application areas relevant to our work:
formation assignment, convergence and control, and obstacle avoidance.

1 Unfortunately, the competing team’s data were not shared with us for this report.
2This paper is greatly expanded from its preliminary version, which appeared in Vander Hook et al. (2019).
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2.1. Formation assignment and control

We describe here experimental and simulation-based studies that feature collective motion of
multiple agents to perform formation maneuvers, patrolling actions, and other tasks using different
formation assignment and control methods.

The generic problem of formation keeping is often focused on underactuated systems. For instance,
simulations in Arrichiello et al. (2006) maintain formations of underactuated USVs in the presence
of obstacles and sea currents by decomposing the control problem into coordination via a behavior-
based controller that outputs desired velocities and maneuvering using a low-level control system
that translates desired velocities to actuator inputs. Bio-inspired methods are also used; for example,
Fu and Wang (2018) combine a bio-inspired speed controller with a sliding-mode controller for leader-
follower formations of underactuated USVs to overcome the problem of speed jump in backstepping
control methods.

Modeling external disturbances and realistic environments is a key challenge in planning for
maritime applications. Peng et al. (2015) simulate cooperate dynamic positioning of a fleet of USVs
connected by a network and subject to ocean disturbances using a predictor module for estimating
disturbances and dynamic surface control. In an in-silico study (Dai et al., 2017), a decentralized
adaptive formation control is achieved using a combination of prescribed performance control for
transient performance specifications, neural network for model uncertainties, disturbance observers,
dynamic surface control technique, and Lyapunov synthesis. Liu and Bucknall develop and simulate
practical path-planning routines for maritime USV formations in realistic environments consisting
of static and dynamic obstacles using variations of the fast marching method (Liu and Bucknall,
2015; Liu and Bucknall, 2016; Liu and Bucknall, 2018a) and employ a leader-follower paradigm such
that the leader moves with constant velocity, and followers are allowed to vary speed to maintain
formations.

The use of neural networks in control pipelines has been studied in Wang et al. (2020) where a
leader-follower fleet is kept in formations defined by distance and angle constraints using an adaptive
control strategy consisting of barrier Lyapunov functions and neural networks that account for model
uncertainties. Similarly, in Peng et al. (2017), USVs get in formation around a virtual leader using
a recurrent neural network to solve for optimal guidance signals and a fuzzy system to estimate
unknown kinetics, thereby adhering to the velocity constraint and minimizing control torque during
the transient phase.

In resource monitoring applications, the large scale of deployments poses special communication
challenges and limited opportunities for human-in-the-loop operations. A low-cost, multi-robot
platform for monitoring and sample collection over large areas with minimal human intervention is
successfully designed and tested in Valada et al. (2014) where the use of smartphones, centralized
control, and long-range communication yield robust performance in field tests where regions are
assigned to vessels using random and highest uncertainty tracking sampling algorithms. In Duarte
et al. (2016), a swarm of 8 agents is used for environmental monitoring where the decentralized
control is formulated via a neuroevolutionary algorithm that trains an artificial neural network to
transform sensor data to desired speed and heading. Often these applications lend to systems with
a large number of agents; for example, in Zoss et al. (2018), a rule-based decentralized control
algorithm is used to achieve collective behaviors, including flocking, navigation, and area coverage
for swarms of up to 50 self-propelled buoys in open environments. At large scales, coordination
between agents is focused on achieving connectivity in communication, such as Yu et al. (2019),
which simulates minimally actuated multi-agent systems with synchronized trajectories to maximize
communication and form connected sensor networks in gyre-like flows.

Threat monitoring and asset guarding applications often require unique objectives. For example,
in Fan et al. (2020), a formation is required to move toward surrounding a target point simulta-
neously, and the tasks are assigned using a modified Dubins path method that incorporates rigid
body constraints. Sensitive marine areas are patrolled and guarded using a fleet of USVs using
a cluster-space control method that allows a human operator to monitor and control formation
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parameters in Mahacek et al. (2011) where the system is validated with a fleet of robotic kayaks.
Note that this cluster-space approach does not require a formal assignment step. Harbor patroling
experiments are performed by a three-boat platoon in Antonelli et al. (2014) and Marino et al. (2014)
using a combination of Voronoi tessellations and Gaussian Processes in a decentralized strategy,
where online optimization is used to assign the interception task to an agent with the shortest
travel time to the threat. Raboin et al. (2013) develop a market-based approach for the task-planning
problem of multiple USVs guarding a valuable asset from potential intruders by performing different
actions collectively where tasks are assigned incrementally and a set of allocations are assessed using
model-predictive simulation.

2.2. Obstacle avoidance

There are many approaches for avoiding obstacles within a motion-planning routine that generate
safe trajectories or behavior patterns for multi-agent systems (Liu and Bucknall, 2018b; Rossi
et al., 2018). A few of the techniques are velocity obstacle and its variations (Fiorini and Shiller,
1998; Van den Berg et al., 2008; Wilkie et al., 2009; Snape et al., 2011), model predictive control
(Park et al., 2009; Ji et al., 2017), artificial potential fields (Ge and Cui, 2002; Warren, 1990), and
roadmap-based approaches such as visibility graphs (Alt and Welzl, 1988; Kunchev et al., 2006),
probabilistic roadmaps (Kavraki et al., 1994; Hsu et al., 2006), and Voronoi diagrams (Zhou et al.,
2017; Breitenmoser et al., 2010). Here, we use optimal reciprocal collision avoidance (ORCA) (Van
Den Berg et al., 2011a), which consists of improvements to reciprocal velocity obstacle (RVO)
(Van den Berg et al.,, 2008) in the form of conditions that guarantee collision-free navigation
in the presence of multiple robots. Of all the methods in literature, only velocity obstacles (and
therefore ORCA) guarantee collision-free paths and will take immediate action to avoid collisions.
The next-most-popular variant, Artificial Potential Fields, can significantly delay obstacle avoidance
actions and does not guarantee that all agents can choose collision-free paths.
The next sections describe the system, its requirements, its design, and its performance.

3. System Architecture Overview

The goal of this section is to overview the existing system. For an overview of the requirements of
the final design, see the next section. The planning and high-level control pipeline will be presented
in Section 5.

The boat under test is the High-Speed Maneuvering Surface Target (HSMST, Figure 1). The
HSMST is an 8-meter-long commercial rigid hull inflatable boat (RHIB). It has two outboard engines
that enable it to achieve high speeds in fair and moderate seas. The HSMST is already used in
a variety of systems testing or training scenarios to replicate various high-speed surface threats,
especially multi-vehicle operations. Each HSMST has a local network of processors—the nodes—
interconnected by a Controller Area Network (CAN) bus. The network of all nodes on each boat,
across all boats, and all operator stations is called the SeaCAN network. A system diagram for the
local SeaCAN network on each agent is shown in Figure 2. In general, each node is a single-board
computer or microprocessor that has a single functional responsibility. For example, there are nodes
to control the vehicles actuators (e.g., rudders and throttles), a node to run the engine interfaces,
a node for instrumentation, one for radio communications, and a removable node for autonomous
control (Autonomy). The Autonomy node can therefore be removed and is drop-in compatible with
any vessel in the fleet. The modular design has been verified on various types of vessels from personal
watercraft to large ships. STEB maintains a wide variety of vehicles types, but this work is focused
on the HSMST.

The remote control system provides (via the onboard nodes) throttle, rudder, engine, and
auxiliary devices control (if present). It also provides the operator with the following information via
telemetry: speed, engine RPM, GPS location, and, heading. The command, control, and telemetry
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Figure 2. SeaCAN is the onboard remote control system for networks of seaborne targets. It uses the CAN bus
to send a set of standardized messages between microcontrollers called nodes. Each node has a specific function
such as control of an actuator or sensor management. The modular design provides the flexibility to be used in a
variety of seaborne platforms from personal watercraft to ships. (Note: nodes shown are notional. “King” is the
operator input station, and “Sense” is an optional sensor package).
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Figure 3. A block diagram of the PCCU (Portable Command and Control Unit). The unit connects to the
SeaCAN network to transmit commands to each vehicle on the network, including remote-control or commands
to Autonomy nodes.

exchange is accomplished via radio link. The Command interface is called PCCU (Figure 3). At
minimum, it allows joystick control of any vehicle remotely. When an autonomy node is present
on the vehicle, it also supports heading/course-keeping, drag-and-drop waypoint control for one or
more vehicles, transits in formation, and several demonstration-specific commands such as following
arcs or weaving paths, all discussed in the next section.

Each HSMST can be remote operated, directed by onboard autonomy or controlled by an onboard
safety driver. Autonomous control is easily overridden by the onboard safety operator in the event
of unsafe behavior. Safety drivers are always onboard except for the most aggressive test regimes
that might endanger operator safety because of rough seas or during live fire exercises. Drivers are
also not used when a human operator cannot react quickly enough because the boats are moving
too fast, or are too close (for example, Section 8 and Figure 17). An example of the 2018 test as
viewed from the control station is in Figure 4.

This architecture was fixed prior to the initiation of Autonomy development by operational
constraints of operating a large number of vehicles over a long range. This had direct consequences
on the Autonomy node development. Most importantly, it was a preexisting, immutable requirement
that the only explicit exchange of information between the boats is a shared world model consisting
of the boat’s current operating mode, position, and velocity. This was shared at a varying rate from
3 to 10 Hz.

Field Robotics, May, 2022 - 2:872—909



878 - Vander Hook et al.

Figure 4. Playback of on-water data showing positions and velocities of the four HSMST test vehicles. This is
the view from the PCCU control station during the 2018 tests. The green lines show velocity vectors of length
proportional to velocity. The red circles around each vehicle are the standoff distances (overlapping circles is a
failure). The boats were traveling at up to 25 knots during these tests.

This introduces a difficulty in designing Autonomy, however, since now vehicles cannot explicitly
exchange information with each other. Therefore, all coordination must be implicit (i.e., control and
decision processes are necessarily distributed).

4. Autonomy Overview and Requirements

The requirements described in this section were levied on the autonomy teams as part of the
development program and were not subject to change. In addition, “blind” tests of formations,
speeds, and maneuvers not included in the initial requirements were included in the test event.
These were withheld from release to publication. The overall pipeline to realize these capabilities is
discussed in the next section and is shown in Figure 10. The qualitative goal was to perform fast,
agile maneuvers, in particular synchronized weaves and formation switches with minimal transition
time.

The autonomy node designed for STEB at NASA JPL was built on top of the CARACaS
autonomy framework for distributed robotic systems (Huntsberger et al., 2008; Huntsberger and
Woodward, 2011; Woodward et al., 2017). When the vehicle is operating in autonomous formation
drives, it is responsible for the safety of the vessel and operator (if present), as well as responding to
operational commands such as the direction, speed, or type of the formation. Commands are sent
in a shared bus architecture over the SeaCAN network, meaning all Autonomy nodes can read data
from any other node.

HSMSTs can be issued commands individually or as a group. Groups are how autonomy is aware
of which vessels it should cooperate with during commands. For example, software on one vehicle is
aware that it should be in formation with other vehicles because it has received a formation transit
command and knows which vehicles are in its group.

For example, during changes in formation, it is possible for two boats to have to swap positions.
However, each boat is only given the set of parameters (e.g., formation positions) relevant for its own
operation. To be effective with limited bandwidth and almost no ability to exchange information,
autonomy is built to infer the intended actions of the other vessels.

4.1. Safety of navigation

To accommodate safe operations, STEB has set up a framework for determining safe operating
speeds, minimum safe separation between vessels, and safe command sequences during testing.
The safety requirement is expressed as a minimum approach distance and maximum speed, both
measured by telemetry. Several factors play into the choice of safe speeds. The most relevant
factors are proximity of operations, presence of humans, and sea state. Machines are given the
same maximum speed constraints as human operators. Speed constraints are currently specified by
human operators as part of the regular operation by observing current conditions and consulting
safety protocols. (See discussion in Section 9.)
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3-way shuffle 1

3-way shuffle 2 Line 1 Line 2
(4]

File 1 File 2 Echelon right Echelon left

Figure 5. All formations presented in this paper, (virtual) leader positions x, are shown as (virtual) white circles.
Test results of transitions between these formations are presented in Section 8.

Whatever the safe speed, collisions during autonomous operations are a serious risk whenever
human operators are onboard. Each vessel has a safe separation distance. As with safe speeds,
standoff distances take into account several factors such as waves, winds displacement, speeds of
operations, and types of maneuvers. At full speeds and in close proximity, improper maneuvers
can cause a collision in less than a second. Thus human operators are not used, and autonomy is
expected to intervene and avoid collisions by steering, reducing speed, or shutting down the vehicles
and warning the operators.

4.2. Manual and mixed operation

Each HSMST can be remotely operated by an operator on the network or on the vehicle. The vehicles
must allow seamless operation for the PCCU operator to switch between manual and autonomous
control at any time. In addition to onboard override of autonomous operation, the PCCU allows
joystick input, which is passed to the onboard navigation node. Autonomously maneuvering vehicles
must give way to manually operated vehicles.

4.3. Waypoint navigation and velocity keeping

When commanded on course speed or toward a waypoint, onboard autonomy is responsible for
setting a desired vessel velocity. To allow portability between different vehicle types, a lower-level,
preexisting velocity controller is provided on each vessel via the navigation node.
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Waypoint navigation consists simply of a line-following algorithm implemented as a feed-forward
proportional controller. Velocity control is passed through to the vehicle’s throttle and rudder
controller. The primary role of autonomy is to keep the vehicle safe from collisions by steering
around them while proceeding as commanded.

4.4. Formation control

The main ability required is the control of many vehicles by a single operator. The concept of
operations is to allow a single operator to assign boats into formations and specify high-level
commands to each formation. As such, the system allows a human operator to control one or
more virtual boats that appear in the situational awareness picture of each autonomous vessel (i.e.,
its location and velocity is broadcast over the network). The boats then “form up” with the virtual
boat. The virtual boat is the leader in what follows and can be steered through any maneuver or
commanded in the modes above. The human operator can switch control between multiple virtual
leaders and therefore control many formations simultaneously. A real vehicle, even a manually
operated one, can be used; we will refer to any formation leader as a virtual leader going forward.

The formation for the autonomous vehicles can be preset so each vessel knows its assigned position
relative to the leader. These are called static formations. In shape formations, parameterized shape
is defined, but the location and assignment of formation points must be calculated by all boats
simultaneously. Contrast with an adaptive formation in which the formation points are specified
fully but not which agent should occupy which position.

Static and adaptive formations are specified as potentially time-varying offsets o;(¢) for the ith
boat, from the virtual leader position x,(t). Each boat receives a coordinate pair denoting the offset
specified in a coordinate frame centered on the virtual leader and aligned with its direction of travel
(Figure 8a). The PCCU interface allows preloading many formations so an operator can rapidly
change the desired formation for one or more groups. By specifying the offset as a parameterized
time-varying function, the formation can undergo smooth maneuvers such as weaving or gradual
changes. The main requirement was for stepwise changes in formation so the onboard planner had
to determine transition strategies.

4.4.1. Formation transitions

The key capability, and the one that underwent the most rigorous analysis and design, was
optimal formation transitions. When the formation commands change, the boats are expected to
expeditiously and safely assume the new formation without conducting maneuvers that wildly differ
from what a human operator would expect to see, such as oscillations. The bulk of our experiments
and analysis for this paper involved testing formation switches between a set of the formation types
illustrated in Figure 5 and comparing the measured time with derived, analytical bounds as well as
time from simulations. The formation list was levied as a requirement under the program, as were
the rest of the capabilities described in this section. We were not privy to the selection process. See
Section 9 for more discussion on this point.

4.4.2. Formation weaving

Typically, the goal of formation control is to converge to a fixed (in the local coordinate frame)
formation point in the steady state. However, during formation weaves, the (local) desired formation
point is time-varying, and the vessel will follow a sinusoidal pattern that oscillates around the
nominal formation point (Figure 6). The bottom row of Figure 14 illustrates a simulated formation
weaving scenario, specifically in a line formation.

4.4.3. Operational improvements

The above requirements support three key operational improvements enabled by quickly reassigning
formation points. These are arbitrary startup, dynamic groups, and reshuffle. Arbitrary startup
allows a formation to quickly form or re-form when starting (or continuing) a formation transit
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Figure 6. Weaving maneuver on a three-boat echelon left formation, where leader’s position x, and velocity u,
are shown in green. The weaving paths are in-phase and are designated by a wave amplitude and wavelength.

(Figure 4). Dynamic groups allow the formation to accommodate vessels joining or leaving for-
mations safely and with minimal control effort. Reshuffle allows the formation to accommodate
sharp turns with minimized effort by swapping formation points; for example, a line-abreast quickly
reversing its course (Figure 7). Safe, reliable, intuitive execution of these capabilities builds trust
in the system by untrained operators and allows streamlined test-day events, further decreasing
training and operational overhead of the system.

Examples of each of these are shown in Figure 9. These capabilities went through single-blind,
metric-validated tests starting in 2017, the winner selected in 2019, and culminating with a 2019
operational deployment. We present a subset of all the formations (Figure 5) and transitions between
formations. We discuss these field tests in Section 8. Next, we discuss the implementation of these
capabilities in detail.

5. Autonomy Design

We now define the motion-planning pipeline that results in the desired capabilities. Our goal was
to define a single mode of operation that can provide all the capabilities described previously. The
high-level design is shown in Figure 10. In summary, the main loop executed on the autonomy node
is completely stateless, idempotent, and reentrant. The situational awareness information is sent
into the node over the SeaCAN bus, as well as the command information (formation shape, control
mode, etc.), and this is used to calculate the own-ship desired velocity for the current time step.

Figure 7. Example of an adaptive line formation where the virtual leader’s heading is flipped from the initial
direction of travel. The relative order and formation points of the agents change as they reshuffle to minimize
distance traveled and get into formation faster.
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Figure 8. (a) Positions for each boat i are defined by offsets o;(t) from the leader position x, (green) and are
transmitted as part of the command from SeaCAN. (b) Problem 2 for a single vehicle. A real (or simulated) leader
(green) is moving on a trajectory determined by a remote operator. The formation-keeping task is to control each
HSMST so they stick to their offset (White), as defined by the leader position.
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Figure 9. (a) From arbitrary starting positions (red) x;, the boats use a deterministic assignment algorithm to
ensure agreement. Formations can adapt (b) to a new boat at x; joining at formation point y; or (c) a boat at
x; leaving the formation. The leader is in green, and direction of travel is shown.

5.1. Prediction of formation path

When a real, possibly manned boat is not used as a leader, the virtual leader is actuated by a remote,
human operator, and its position follows a kinematic model based on the joystick commands of the
human operator. The virtual leader position and command is known to each boat, and autonomy
predicts the path based on the current control input and simple kinematics to generate the formation
path.

The kinematic model m,, for the virtual leader is a unicycle model with state: x and y for position,
v for speed, and 6 for heading. The PCCU captures the joystick motions of the human operator and
outputs a commanded speed and heading c¢,. The model puts limits on the acceleration a and turn
rate §. Operationally, 6 was chosen to be 3 degrees per second.

X x(t) 4+ vigq cost
_ y _ Udesired _ y(t) + Vt+1 sint
T v b |: gdesired :| M (t) o 'U(t) +a ’
6 0(t) + 0 (1)

a = O-Q(Udesired - U(t))7

h
where 0= max(—&max, min(edesired - e(t)a 6max))-

5.2. Derivation of formation points

As stated in Section 4, there are three types of formation modes. Static specifies both formation
points and assignment of boats to points. adaptive formations specify formation points but not
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Figure 10. Autonomy node planning pipeline.

assignment. Shape does not specify the formation points or the prior assignment of boats to points.
By specifying formations with a shape, a small number of bytes broadcast to all boats allows them
to use onboard calculations to avoid any ambiguity in the steady-state desired locations of the boats.

For Static formations, each boat simply reads its own offset from the PCCU command message
and then passes it through as the output assignment.

We deal with Shape formations as follows. First, each boat receives a command specifying a shape
formation. The types of shape formations are limited to a specific, parametrizable type (“Wedge,”
“Line,” etc.). In our current system, the parameters of the formation are spacing and angle between
boats but also includes a pattern of enumeration for adding subsequent boats that depends on
the specific formation type. For example, the x and y offset points for the Wedge formation are
calculated as follows, where d is the separation distance between the boats, i is the rank of the boat,
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1=0,...,N — 1, and N is the total number of boats.

—dicos45° ifimod2=0
Ojg = . . } (2)
di cos 45° ifimod2=1
0y = —dicos45°. (3)

In general, the specific method used to determine formation points from the shape may vary,
so long as each boat uses the same method in a deterministic way to arrive at the same results
without communication. The output is then a set of points around the virtual leader, but not the
assignments, reducing the problem to an adaptive formation.

5.3. Formation point assignment

To find its position around the virtual leader, a boat must know the available formation points
and must also know which formation point it should assume. We use deterministic optimization
algorithms to ensure that each boat can derive as much information as it can without explicit
communication.

Given the derived formation points (or commanded, if already in adaptive mode), the boats must
now determine which of the swarm should occupy each formation point. For this, we solve the
following optimization problem.

Problem 1 (Formation assignment). N wvehicles at points X = x1,...,xN are given a set of
formation points Y = y;,...,ym for M > N. Each point y is moving with the same course and
speed u,. All agents must choose a mapping A : X — 'Y such that the total intercept cost ¢(X, A(X))
is minimized.

This assignment is the classic job assignment algorithm with an N x M matrix and was solved
using Hungarian Assignment algorithm (Phillips and Garcia-Diaz, 1981) in polynomial time. The
assignment regimes were free (boats take any point in the formation, e.g., M > N) or rank-based,
such that N boats always occupy the “first” N points in the formation (truncate so M = N).

5.4. Path following

To converge to the desired formation point, which moves along with the virtual leader, each boat
solves a trajectory optimization problem as follows. Let the virtual boat’s state be x,(¢) and the
virtual boat’s commanded speed and heading be ¢,(t) at the current time ¢. Using the model by
which the virtual leader’s state evolves, x,(t + 1) = my, (2, (t), ¢,y (t)), each boat i knows its desired
trajectory for the next T' seconds by X7 = my (2, (t — 1), ¢, (t —1)) +04(t) for t up to T' (Figure 8b).

Problem 2 (Formation point convergence). Choose a command sequence for the next T steps,
Ci = ¢i(t),...,ci(t+T), to bring the vehicle’s predicted position X; = m;(xz;(t),C;) to the path of
the moving formation point, X} = my,(x,(t—1), ¢, (t—1))40;(t) (Figure 8b). The vector C represents
the bounds on the control allowable, such as maximum safe speed. The constraints are given as part
of the command sequence and not known a priori.

Our preferred control method to solve Problem 2 is a forward-shooting trajectory optimization
algorithm. Our control architecture consists of a high-level model predictive controller (MPC)
(Camacho and Alba, 2013) that feeds a desired velocity into a low-level throttle and steering. The
MPC optimizes the trajectory and outputs speeds and headings that would achieve the trajectory.
The desired speed and heading are passed as inputs to the vehicle controller. The vehicle controller,
which we do not have direct access to, regulates the speed and heading of the vessel. It is developed
and tuned by the sponsor, and the interface is accessed through the SeaCAN network where the
desired setpoints for the speed and heading are specified in a CAN message.

To solve the trajectory optimization problem, the task is formulated as a discrete time optimal
control problem where x contains the same state as the virtual leader and u is the control input for
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this specific problem formulation, which is acceleration and turn rate.

1 T
w32
s.t {I?o:.’fo,

OZAI't+B’U,t*IL't+1, Vt:O,,Tfl,

OSVtSVmaxa \V/t:O,...,T,
_amaxgatgamax, thO,...7T—1’
_5max§5t§5max7 VtZO,...,T—l.

It is distinct from the command input ¢ of the actual system, which is speed and heading. The
desired speed and heading are obtained from the solution state of the optimization. z, specifies the
current state of the boat. W is a weighting matrix that corresponds to cost terms that penalize
diverging from the trajectory. X and U are the full state and control trajectories that we optimize
over. A time horizon of T' = 7s with a time step of 1 second was chosen for the experiments.

1 0 cosf; —visinb; 0 0

| 0 1 sinf vicosb 100
=190 1 0 » Be=10 o | (5)

0 0 0 1 0 1

For the problem constraints, A and B represent the kinematic model of the boat. The unicycle
model from the virtual leader is used but linearized about v and 6 at each time step (Equation 5).
A maximum speed was also imposed as a safety constraint for the experiment. Typically, viax Was
25 or 35 knots. The maximum acceleration and turn rate were chosen to be 7m/ s” and 25 deg/sec,
respectively. These values were based on a rudimentary system identification process of the boat
where measurements were taken at a number of steady state conditions, and then the maximum
values observed were chosen. Future work would involve finely modeling the throttle and rudder
to more accurately capture the control input, but for the purposes of this work, we were explicitly
told to not make any assumptions about the physical characteristics of the boat, as the intent is
to be able to deploy the autonomy system on any type of vessel. Having a separate high-level and
low-level controller achieves a good balance for this requirement.

Finally, the control problem is transformed into a standard quadratic program in order for a
solver to handle it. The open source solver, qpOASES (Ferreau et al., 2014), is used to solve the
standard form, where the optimization variables are the entire trajectory states and controls stacked
into a vector w = [zg,uo, ..., Tr—1,ur—1,27]. H and g represent the costs and the constraints to
capture the dynamics.

1
min —w' Hw+wTg,
w 2

st b <w < ub, (6)
lba < Aw < uby.
5.4.1. Formation weave following
Building on the formulation for formation point convergence, the time-varying offset point that

defines the desired weaving path of the vessel evolves according to the following, where 0;, and oy
are the x and y coordinates of the assigned formation point in the local frame of the virtual leader.

Xi*:mv (xv(t_l)vcv(t_l))"_oi(t)v (7)
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Fjs

(a) (b)

Figure 11. (a) The two-staged keep-out zones of vehicles i and j. Each radii can be changed and varies between
vehicles or tests due to operational conditions. (b) Auto-shutdown occurs when safety buffers overlap and distance
between vehicles i and j is less than r; s + r; for a given stage s.

0i(t) = Ry(t) KZ”) + (Asm(?t + "5))} . (8)

iy

Ry(t) is a rotation matrix parameterized by the heading of the virtual leader, such that we are
transforming our offset point into the current frame of the virtual leader at time ¢. v is the velocity
of the virtual leader. A, A, and ¢ are the amplitude, wavelength, and phase specified in the PCCU
command message. The weaving amplitude is perpendicular to the direction of travel. The same
model predictive control technique above is employed in order to track this path.

5.5. Safety checks

Regardless of the mode of operation, each vehicle is responsible for its own safety margins. The
simplest of safe-keeping methods is to stop all vessels that get too close. In the event that any two
boats violate a safety standoff distance as in Figure 11b, autonomy is designed to stop the vessel.
However, if the vehicles detect an impending collision but have not yet reached the standoff distance,
they can recover by coordinating their maneuvers to avoid each other.

For mutual avoidance maneuvers, we deploy velocity-obstacle-based collision avoidance because it
caused fewer safety shutdowns during testing, was easier to tune for any situation, and had a minimal
effect on the formation convergence times. NASA JPL has a long history of projects using velocity-
obstacle-based collision avoidance (Kuwata et al., 2014). The collective decision-making implicit in
ORCA has several tangible advantages on our formation control design. In traditional, single-agent
VO, a boat in the middle of a tight formation would initiate a hazard avoidance maneuver but
would be constrained by its neighbors, resulting in a solution that requires slowing down. However,
using ORCA, all boats take partial actions to allow the middle boat to avoid collision (i.e., splitting
the formation).

We use a combination of traditional velocity obstacles and ORCA in our hazard avoidance. Each
agent has two sets of keep-out zones (Figure 11a). The first radius is responsible for higher-level
heuristics to speed transitions while taking into account safety, and the second is responsible for
avoiding unsafe approaches should the first fail.

5.5.1. Priorities
The first, larger stage was not set by operators but was instead set by our subsystem to be larger than
the smaller radius for two reasons. First, it allowed a “buffer” between ORCA’s assumption of instan-
taneous velocity changes. For this purpose it was often useful to ensure the first radius was at least
2x the smaller radius and at least as large as the assumed turning radius of the boats. Other tuning
produced mostly cosmetic changes (earlier maneuvers versus later in terms of time to collision).
The more important use of the first stage was to inject higher-level priorities into the hazard
avoidance before a hazard was encountered. This was accomplished as follows. Let ¢; be the cost
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0

Figure 12. A scenario to illustrate the first-stage hazard avoidance with distance-based priorities. See text for
description.

of agent i to reach its moving formation point, as calculated by the straight-line time to intercept
(Section 6). We sort these costs and assign a priority according to this ordering so that a priority
p; = j implies boat ¢ has the jth longest to travel to reach its assigned formation point, with p; = 0
implying it has the longest to travel. When checking the first stage of obstacle avoidance, each agent
will égnore (not consider as part of the optimization) any other agent k with p; > py.

This is conceptually illustrated in Figure 12. Agents 1 and 3 need to relocate, but their path
would take them through agent 2’s position. In the prioritized case, Agent 1 would “see” agent 3
as a noncooperative obstacle. Agent 2 would see both 1 and 3 as noncooperative velocity obstacles,
and agent 3 would see no obstacles. This has the (perhaps surprising) effect of agent 2 accelerating
to make way for 3 and 1.

The desirable effect we achieved by using a first-stage prioritization was improved maneuvering
behavior during tight formation switches, such as better symmetry breaking when two boats are
crossing or overtaking. We discuss further and compare to ORCA priorities in Section 9.

5.5.2. ORCA for safe-keeping

The second, smaller radius was set by operators as the auto-shutdown radius. Overlapping buffers
of this radius was considered a failure during testing, and it was frequently changed from small
(a few boat lengths) to large (100s of meters) to assess system performance. We employed ORCA
as described in Van Den Berg et al. (2011Db) for this layer. To be clear, in no cases was the second
stage obstacle avoidance turned off for any vehicle.

5.6. Summary

We have presented in detail the planning and optimization pipeline for our vehicles to achieve safe
and quick formation transitions. It is composed of well-known algorithms executed in sequence
to steer a lower-level velocity controller. A more detailed discussion of the lessons learned and
motivations for our decisions is deferred until Section 9. Before presenting simulated results we first
derive some comparison metrics in the form of a useful lower bound.

6. Analytical Performance Lower Bound

To assess the experimental and simulated performance of formation switches, we compare total time
required to complete a formation switch to an analytical lower bound. We calculate the lower bound
to show how much additional cost is incurred by hazard avoidance and multi-agent path finding
during transitions by comparing to simulated and on-water experimental timings. The difference in
performance versus the lower bound tells us how well the path-planning pipeline is performing, as
discussed in the remainder of the paper. Our derived lower bound will not be tight, but it will be
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Figure 13. Notation used in lower bound calculations. The starting boat position x, is shown in green, the
starting position of the moving target x; is blue and moves along the blue dashed line to the point of interception
Xin (red). The lower bound interception path is shown in solid green.

sound, in that it is always less than the cost, but scales appropriately with the size of the formation.
If done properly, a lower bound can provide a system-and-implementation-agnostic way to compare
performance across different test regimes, as long as the lower bound is computable in those regimes.
In a formation of N boats, t; is the time required for boat i to reach its goal trajectory, and the
makespan M of the formation switch is the longest of the individual transition times (Eq. 9). The
term makespan is used in job-shop literature, and we adopt it here as a performance metric.
M = max t;. (9)
1=1,..,
Therefore, we derive the lower-bound time ¢ required for in individual boat with speed wu to
converge to a target trajectory point whose speed is u;. Consequently, the lower bound of the
makespan Mpp will be the maximum of ¢1,5 of NV boats in a formation. We ignore acceleration
constraints and assume a constant velocity for the boats and the target formation points. Further,
if turning radius and heading are also ignored, the path from the starting position of a boat xy, to
the point where the moving target is reached x;,, is a straight line (Figure 13). To find the lower
bound distance, direction, and time t;,5 required for a boat to reach a moving target point, the law
of cosines (Boyell, 1976) may be used on the triangle shown in Figure 13.
AssuMPTION 1 (Lower bound). The lower-bound time trg, required to intercept a target point
moving at speed us by a boat with maximum speed uy s given by

dpy

Pa— if up = up
2u; cos 6

i = dpt (10)

ug cos 6 + (u? — u?sin? @

)1/2 qut #Ub

where dpy 1s the distance between the boat and the target point initially, and 0 is the angle between
the target point’s heading and the vector from the initial target position to the initial boat position
(Figure 13). This ignores heading and turning radius; therefore, the path from the starting position
of a boat xp to the point where the moving target is reached x;, is a straight line.

Proof: By the law of cosines,
uiti s = ultip +udtip — 2usuptip cos(d), (11)

which implies

0 = u?, — 2(uy cos O)uy, — (up — u?), (12)
Uy = g cos O 4 (uf — u? sin” 9)Y/2, (13)
dy /tLs = ug cos O + (uf — u? sin® 9)1/2. (14)

Field Robotics, May, 2022 - 2:872-909



Swarms of Pirates: Red Team Exercises Using Autonomous High-Speed Maneuvering Surface Vessels - 889

File 1 to File 2, 25/35 kts
A,

w
(@]

600
120 120
14
1500 1500 100 500
100 12 00 _
o 5 0 E 400
2 1000 80 1000 H 0 3
H H > -100 3 300
g g s >- 2
£ w0 £ K 0 g
> 500 > 500 / 6 3 S 200
[ 200 (€ B!
10 s w3
— 4
100
. ~300
0 20 0 ~J ) 20
0
N 0 ~400 0 — = =
500 -0 0 100 500 -0 0 100 300 -0 0 100 0 2 50 1100 12
X (meters) X (meters) VL Local X (meters) Time (seconds)
o Line 1 to Line 2, 25/35 kts
200
u 00 — Agent1
1000 80 1000 0 80 —— Agent 2
12 — Agent3
= 0 \ =400 e pdentd
500 w s 0 B w E gen
£ § s = - 8 30
2 600 ) L > . e
£ 0 = 3 0 3
> > 6 §-100 - 2 500
100 I 100 o g°
s 3
% 4 —150
20 2 100
200 - 200 ,
- - —200 )
0 0 . 0 0 = 0 0
0 200 0 200 0 200 0 20 i 60 0
X (meters) X (meters) VL Local X (meters) Time (seconds)
Adaptive Weave Line, 15/25 kts ,
2000 _ 2000 .
250 3.0 250 700 — Agent 1
100
' —— Agent2
5 5 5 600
1500 oo 1500 25 200 —— Agent3
7 200 E 500 —— Agent 4
20 & =
7 1000 s F 1000 g o B
T 150 g E 150 & 400
2 g S > O] - 2
£ N b £ 3 S 8 300
> 5001 8 e 4 24 q 100 > 500 / 3 \ 00 &
] 103 —900 3200
0 50 0 05 50 100
~400
0
=500 - - = 0 —5001- - - > 0.0 - o - - 0 = + -
500 =20 0 20 500 500 =30 0 250 500 500 =20 0 250 500 0 0 100 150 200 20
(

X (meters) X (meters) VL Local X (meters) Time (seconds)

Figure 14. Analysis plots illustrating simulated formation switches. Each row represents a different scenario; the
scenario name and nominal/max speed are listed above the leftmost plot in each row. Each column is a different
type of analysis plot labeled A-D. A: the world path taken by each agent (colored by time and agent icon to
visualize agent position at a particular time), B: world path colored by hazard avoidance effect (magnitude of
change in input desired and output safe velocity), C: agent paths in the virtual leader (moving) local frame
colored by time, and D: time versus distance to target formation point. Note that the virtual leader path is not
plotted.

The result follows. Furthermore, a condition for the existence of an intercept point is found by the
law of sines,

uplL  witLB
- 15
sin @ sin 8 (15)
= sinf = Lsind (16)
up
= up > uzsin 6. (17)
|

We report the field test makespan Mg, simulated rzlakespan Mim, as well as both these quan-
tities normalized by the lower-bound makespan Myp: Miest = Miest/Mrp and Mgim = Miest /M.

7. Simulation Results

In this section, we take advantage of simulation studies to present summary comparisons of the
contribution of priorities to formation convergence and discuss example transitions. We also present
insight into the field experiments in the next section using the same methodology. In Section 8, the
simulated times to convergence are presented in Table 2 to compare to recorded times in our field
experiments as well as the derived bounds.
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Figure 15. Convergence times.

Figure 14 illustrates a few simulated formation switches, along with a few of different types of
plots we use for analysis of the agent behavior. Appendix A presents the entirety of our simulated
formations, for reference. In these simulations, each row is a scenario, and four plots are shown. The
leftmost is the paths of the vehicles. The second is the paths, overplayed with the “hazard-avoidance
effort,” which is measured by difference in preferred from actual velocity (yellow is highest). The
third plot shows the “formation-local” coordinate frame, which is all the boats’ positions over time
relative to the virtual leader. The fourth column is the distance of each boat from its intended
formation point.

The world path and virtual leader local plots together visualize the agent paths over time in
a static plot (see Section 9 for more on the use of these plots in testing). As we run our hazard
avoidance in a prioritized scheme, the plot illustrates how agents closer to their target point give
priority to agents farther away to minimize time overall for the group. This is most notable in the
first row, which we refer to as a “file shuffle” formation switch. The leading agents move aside for the
one in the back to come all the way to the front. This is illustrated in plot Figure 14b where we see the
magnitude of velocity change due to hazard avoidance greater (lighter colors) for the leading agents.

Note in column B, row 1 (file 1 to file 2) that the trailing boat in the first formation has to
move to the lead boat in the second formation. To accommodate a fast transition, the rest of the
boats “give way” by moving aside. This does a good job of illustrating the use of priorities discussed
in Section 5.5.1. As another illustration, note that in row 2, the control “effort” (column B) was
greatest for the middle two boats, which were forced to give way to the outer boats because they
had longer to travel. Finally, an arbitrary start is shown in the last row. In this case, there was no
need for prioritization or hazard avoidance, and all agents converge rapidly to their tracks.

To quantify some of the benefit of priorities-from-distance, we simulated a batch of 100 formation
convergence times from an arbitrary startup. The simulation parameters are given as follows (N
implies a normal distribution, and U a uniform one).

Parameter Value

Stage 1 (VO) Time Horizon 30s

Stage 1 (VO) Radius 60 m

Stage 2 (ORCA) Time Horizon 45 s

Stage 2 (ORCA) Radius 65 m

Max Speed 12 m/s

Formation Speed 8 m/s

Agent Turning Rate 20 d/s

Starting Points (x,y) U(0,600), U(0,600)
Starting Velocity (x,y) N(0,6), N(0,6)
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Figure 16. A “crowding out” example that shows the benefit of distance-based priorities. The top row does not
use priorities (standard RVO/ORCA), and the bottom row uses the modified prioritization scheme introduced in
Section 5.5.1.

We varied with and without prioritization (using priorities as discussed in this paper) but left
all other parameters the same. The convergence time distributions are shown in Figure 15 on the
facing page or Table 1 on page 905. Note that we capped the simulated time at 300s, and three runs
timed out without priorities and none with priorities.

We note a 20% reduction in maximum convergence times. The true reduction is likely a little
higher since we capped the simulated time at 300s. Figure 16 shows a particularly interesting case
of how priorities help. In our experiences on water, we continually noticed that a “crowding out”
occurs when one agent is stuck behind another, yet the minimum-deviation velocity correction does
not cause the agent to “go behind.” Note in Column B that the agent does not “go around” until its
deviation (the color scale) gets very high. To contrast, in row 2, the same agent is allowed to move
more directly to its formation point. This was the primary inspiration for our choice of first-stage
hazard avoidance wherein agents are allowed to “ignore” possible collisions with other agents that
are closer to their destination (and those agents consider the ignoring agent “noncooperative” as in
Section 5.5.1). See Section 9 for more on his problem with nonprioritized RVO.

8. Field Experiments

From 2017 to 2020, the motion-planning pipeline was verified using up to four HSMSTs and human
operators in Oxnard, California, and the Pacific Missile Range Facility, Hawaii, USA. Tests used
the formations discussed in Section 4 (Figure 5).

The tests defined many scenarios, beginning with simple hazard avoidance verification, including
head-on collisions (see Figure 17 on the following page), crossing left and right, and overtaking.
We also tested up to four vehicles in a “pile-up” where they were all ordered to pass through the
same point. These tests were used to validate hazard avoidance and replanning before beginning
any formation transit tests. We omit the explicit details of these collision tests. However, additional
tests and evaluation of the system described here are presented in Reitz and Wilkerson (2020).
Formation weaving was also tested and validated, with Reitz and Wilkerson (2020) performing the
bulk of the analysis in comparing the weaves with the desired amplitude, wavelength, and phase.
However, for the purposes of this paper, we focus on analyzing the optimality of the formation
switches, specifically using time-to-convergence metrics.

To show the scale of the STEB test area, consider Figure 18 that shows an example of a long,
steady-state transit of three vehicles under a single operator control. Note the slight gap in the
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Figure 17. A 2019 test filmed from a remote-controlled quadrotor. The boats are conducting two tests at high
speed, a weaving formation transit, and a four-way crossing. The boats are under completely autonomous control
and are uncrewed.

tracks, which we attribute to the base station losing communication with the vehicles. Note that
the test continued because the boats can communicate with each other still.

For completeness, we present the entirety of a 2018 validation test run that occurred over a week
in July. The formations, convergence times, operating speeds, formation heading, and simulated and
observed times are presented in Table 2 on page 906. The normalized test and simulated makespans
are used to describe the differences in the theoretical and experimental results. Simulated makespan
was smaller in all but 7 of the 37 total formation switches studied. The test makespans are 1.6-12.9
(median=4.0) times greater than the lower bound makespans, whereas the simulated makespans are
1.3-6.9 (median=2.6) times greater than the lower bound makespans. For the experimental tests,
the normalized makespan was greatest for formation speed/max speed ratio of 15/25; however, the
simulated normalized makespan grew with the magnitude of speeds of the boats and targets (see
median values at the bottom of the table). Figure 24 plots these results in Appendix B.
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Figure 18. Two examples of long, steady-state formation transits under remote control. (North is up.) Note that
in the second figure, the formation begins in the upper right, transitions along the paths shown to the bottom
left, then turns 180° abruptly (reshuffling assignments), and then proceeds east through a pair of formation
transitions.

We next plot the linear correlation between simulated and test formation switch makespans in
Figure 19 and find that the coefficient of determination is 72 = 0.601.

Note that if the field tests matched our expected simulations, we would expect that they would
be perfectly correlated on a 1-1 slope (a unit slope is displayed for reference). However, the gap is
not so large, but there are strong outliers in some of the higher speed tests (note the upper right
quadrants). These “outlier” events did occur during a time when sea states were elevated, and it
is true that we did not model sea state in our simulations. However, efforts were made by the test
conductor to adjust operating procedures to minimize the effect of sea state. This was done to keep
safety drivers safe, and its effect on the system was unclear. This qualitative assessment needs to be
backed up with significant studies of the effect of sea state on the system. See Section 9 for more.

Note that the speed did not have a substantial effect on simulated and test formation switch
makespans as shown in Figures 19-23 where formation switches performed at higher velocities do
not necessarily result in faster convergence compared to the lower-bound makespan discussed in
Section 6. This implies that for most cases, the makespan lower bound scales along with operating
parameters.

Next, we present plots for three scenarios from an on-water validation exercise (an untested
event). Specifically, these results depicted in Figure 20 on the following page are separate from the
official test trial for which we have reported the timing results in Table 2. The scenarios chosen here

Field Robotics, May, 2022 - 2:872—909



894

Figure 19. Simulated (Msim/MLB) and test (Mtest/MLB) ratios for 37 formation
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Figure 20. Formation switch scenarios from a live field test. These plots compare to simulations in Figure 14
but with slightly different parameters. Note that line 1 to line 2 switch demonstrates a formation turn as well,
which causes convergence to take a little longer.

are to provide a rough analog with the simulated scenarios in Figure 14. The plots are generated
by playing back recorded CAN data into our software pipeline and then using the same analysis
routine as we did for our simulated data.

In the end, the pipeline described in Section 4 successfully provided hazard-free path path plan-

ning in a variety of real-world, high-speed, challenging multi-agent scenarios. It reliably performed
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close to analytical and simulated results, even with mildly increasing sea state or wind conditions.
During all of our verification, no safety violations occurred that were not due to an occasional timeout
of radio transmissions, which would cause a breakdown in situational awareness. The reliance on
accurate situational awareness is not a problem for the development of on-range test vehicles, but
see the next section for more discussion.

8.1. Results

In the final test event, conducted over a week-long period in 2019, the VO-based pipeline we have
presented outperformed potential fields (the leading competing method), generating no safety buffer
violations during test events and converging to final configurations faster in general (Halpin-Chan,
Mr. Tyler, 2019). This team received the maximum possible score. The competing teams’ data and
implementation were not made available to us for this report for comparison.

9. Discussion

In this paper, we have discussed a distributed architecture for high-speed surface vessels to
autonomously conduct formation maneuvers and transitions. The limited bandwidth available
for communication necessitates that each vessel uses mostly onboard information to cooperate.
Cooperative behaviors were designed and field tested using a live system, verifying the design against
operational requirements. All software associated with these capabilities were successfully tested,
delivered, and are in active deployment as of 2020 and the conclusion of the program.

In this section, we discuss the caveats, lessons learned, and future work, and suggest recommen-
dations for the community based on our experiences.

Regarding Section 6, we note that the lower bound provided a good heuristic for our own analysis.
It helped us debug the worst-running cases by showing us the “room for improvement.” In our results,
no simulation or test took less than the lower bound, implying it was sound. The relatively high
ratios (some in Figure 19 were over 12) implies the bounds are loose, but these ratios are not
unexpected given the gap between models and reality. A tighter lower bound to assess formation
switching performance would be a good contribution for general literature. In particular, a lower
bound that takes into account the potentials for collisions (perhaps by counting crossing paths) or
changes in heading (perhaps by employing dynamics models or Dubins paths) would greatly assist
with scoring activities for simulated and multi-vehicle real systems.

Our project concerned the automation of an existing process, that of remote operation of
target vehicles. As such, we had many opportunities to interact with target boat operators, target
range conductors, and stakeholders. Experts in naval and test range operations often have very
different understandings of the expected behavior of a formation-keeping system than, say, a studied
professional in control theory. Significant attention was paid to the maneuvers, not just for their
analytical metrics such as time to converge, but also for their “intuitiveness.” Unless a benefit could
be shown from an autonomous maneuver that was “unexpected,” it was often deemed “safer” to
mimic a human’s decisions. As robots proliferate through test ranges (and perhaps society at large),
this will become an increasingly important mismatch. Especially at first, insufficient trust was placed
in autonomous decision-making, and split-second deviations from what appears “obvious” would
cause safety observers to assume the system has gone awry. For onboard human safety operators,
it can be particularly unnerving when boats are allowed to perform close-in, high-speed passes
or sudden maneuvers because the onboard planner decided to reassign formation points to speed
convergence. The time-optimal formation switch can sometimes involve, for example, an individual
boat moving “backwards” relative to the virtual leader. Figure 21 shows this case.

In the figure, a three-boat formation is assigned to transition while making a 90° right turn. In
static mode, agent 3’s new formation point is behind (below, on the page) and worse, across agent
2’s path. In adaptive mode, agent 3 could turn left to take the rear formation point, but this makes
the agent move the opposite direction in the formation before executing a hairpin turn at high
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Figure 21. A challenging formation transition where time-optimality contradicts intuitive maneuvers.

speed—a maneuver lovingly termed the “Crazy Ivan” by boat operators. The solution condoned by
onlookers is for agent 3 to reduce speed and let the point “catch up” while agent 1 assumes maximum
effort to reach the point to its right. This is something like an optimization problem where each
agent takes minimum effort actions so long as they are not the bottleneck to fast convergence,
and demonstrates the conflict between mathematical/theoretical optimality that operators say they
want and the reality of what they prefer. We anticipate that ad hoc solutions to this problem in
systems that interact with each other or with crewed systems would make predictive control and
joint optimization extremely challenging.

While we received the highest possible score in the final demonstration, we were all the while
pushing against the boundaries of trust by the observers and operators. Fortunately, several volumes
on small boat formation operations are available in the community, and we found these to be a useful
resources during tuning of priorities for formation switches (Unknown, 1942).

Another caveat of the solution provided in this paper is that the test areas (though expansive)
were closed to public traffic. In particular, the system does not provide true “obstacle avoidance”
in the practical sense. It can only avoid cohort vehicles (those employing SeaCAN transmitters by
design) because it has no way of detecting any other hazards.

A side effect of the closed-range operations was that minimizing the time spent during testing
was paramount. A multi-vehicle deployment required base access, significant regulatory compliance,
full-time safety operator oversight for each vehicle, a fully-manned operations center, and at least
a skeleton crew of the autonomy-development team to be on site for each run. The cost to run
such a demonstration meant it was cheaper and more effective to build a simulations pipeline that
interfaced with actual boat hardware than it was to do multiple on-water test events. STEB prepared
a portable hardware testbed that allowed us to test at three levels: simulations of our pipeline
without hardware, our pipeline interfaced with their hardware in the loop for single agents, and the
whole SeaCAN system running with real radios to emulate packet loss. This was accomplished by
providing a simulator connected to real hardware interfaces that abstracted the rest of the nodes in
the SeaCAN network. (See Figure 2). This portable and reconfigurable hardware was vital to ensure
productive test events and ensure the program ended early and under budget. For example, it was
trivial to try a new algorithm, validate on the whole software and hardware stack, and then ship
code to STEB for initial checkout before we scheduled a test event. Automating this test process
and generating batches of reports similar to Figure 14 were well worth the effort. GNU parallel
(Tange, 2011) is used in executing the simulation code.

The discussion of priorities in Section 5.5. differs from the use of scalar priorities in important
ways. The usual optimization is to minimize, across all vehicles, the weighted sum of the velocity
deviations [ming > w;(v; — d;)?, where d; is the hazard-avoidance maneuver for agent i]. ORCA
was built for large numbers of vehicles and fast computation, so this is a computationally simple
approach. However, Figure 16, shows a good example of a crowing behavior where the minimum
sum of deviations for all agents overly penalizes one agent. A simplified illustration is shown in
Figure 22. Here, conceptually, a mutual velocity obstacle defined by their desired velocities blocks
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Figure 22. A conceptual diagram showing the problem with RVO for time-optimal transitions. The minimum
deviation velocity for both agents is shown as a dotted line, which produces little progress toward the goal points.

any progress for both agents. The agents’ attempt to minimize total control effort puts them into a
local minimum where no progress is possible. Our particular use case is to minimize time, not control
effort, so this is unacceptable. Instead, the formulation of priorities discussed in Section 5.5 produces
a solution where one of the agents makes progress, forcing the other to avoid it. We attribute much
of the success of the pipeline to our use of velocity obstacles and in particular prioritized hazard
avoidance.

There is still the problem that in the real world the estimated distance to goal is essentially a
random variable due to uncertain position estimates. If the two agents are essentially equidistant to
their goal points when entering this situation, it is theoretically a toss-up who will gain priority. Quite
remarkably, in testing, this was not a problem. We observed that (qualitatively) a priority assignment
causes an immediate and decisive action thanks to the velocity obstacle, and this immediately
reduces the lower-priority agent’s progress toward goal, reinforcing the solution. We expect this
was possible because of decent and reliable GPS solutions but more so because of “consensus of
state.” That is, agents received each other’s position estimates by communication and acted on that
information rather than onboard sensing. Although priority assignment is theoretically randomized
when distances are nearly equidistant, agents agreed on the outcome because they all had identical
data to calculate a solution.

This is an important point. In an off-range vehicle, it is quite common to assume only onboard
sensing to estimate vehicle and obstacle positions. It is possible that if a sensing and estimation
module onboard can provide situational awareness, our pipeline would “just work.” At minimum,
the presence of vessels would have to be hypothesized based on incomplete sensor information, and
the path-planning pipeline would need to trade off risk versus cost in real time. This is outside
the scope of the funded effort, but other programs are tackling this problem (Wolf et al., 2017).
In particular, given recent, quite astounding advancements in vision-based recognition and tracking
communities, we believe this problem to be approachable using the current state of the art. However,
our experience suggests that the problem of close-in cooperative motion in an uncertain world may
require communication in addition to robust sensing.

For this work, even if obstacles were somehow put into the situational awareness picture, the
maneuvers would not be suitable for real-world use because they frequently violated the “rules-of-
the-road” that other systems are built around [e.g., (Kuwata et al., 2014)]. Practically speaking,
though, the initial adaptation of STEB vehicles for this research is straightforward. The SeaCAN
data bus would simply need to be augmented with an additional node on each vehicle that provides
situational awareness updates.

In Sections 8 and 5.4, note that the testing did not include slow speeds and that the MPC
formulation and modeling was quite simple. Part of this was driven by application: during testing,
faster is better to mimic targets’ actions during engagements, and constant-speed operations while
nearly hydroplaning were simpler to plan. Conversely, the transition between hydroplaning and
low-hull control regimes is extremely challenging to model and plan against at a high level. For
this reason, each STEB boat comes with an onboard engine and rudder controller that has been
designed for a wide variety of sea and speed conditions.
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Figure 23. Test ratios versus heading. Note the preference for testing NW / SE trajectories during this event.

For this project, it was a benefit that the system was abstracted from this controller and could
issue smoothly varying velocity commands to the lower-level, low-level controller, while the low-
level controller navigated these different control regimes. While not discussed here, the “smoothly
varying” aspect of the planner’s output was an important design point so as not to cause problems
with the lower-level set point. The details of this low-level controller were not available to us for
publication. However, we expect that this “layered” approach is or will be common as it made
our team very productive and established clear expectations between the fleet engineers and the
autonomy designers.

For maritime operations, this abstraction breaks down after a point. An underappreciated
difficulty is that of sea state. Human operators set the maximum safe speed based on observed
sea state mostly according to their own preferences, and the trajectory optimization and control
algorithms are otherwise agnostic of sea state. In particular, the maximum speed was updated
according to an on-site operator’s assessment of the prevailing wave height, and the direction of
travel for a formation was chosen based on the prevailing wave direction. It was a proscribed feature
of the system that these changes could be made in real time by the remote swarm operator. This
is evident by inspection of Figure 23, which shows the heading and speeds of the formation for
each of the tests that occurred during times where sea state was elevated. A strong preference for
cross-shore travel (southeast or northwest) is obvious.

Hull slam or excessive pitch / roll can damage a vehicle or make it uncontrollable by conventional
algorithms. A primary difficulty is that conditions vary based on the direction of waves, and so
the safe heading and safe speed are tightly coupled. Prior work on sea-state-aware controllers
should seamlessly integrate into Velocity Obstacle planners (Ono et al., 2014). Inclusion of sea-state
awareness would allow vehicles to simultaneously choose collision-free velocities that are also safe
for the vehicles. However, hydroplaning effects such as those experienced by fast-moving vehicles
require special care since dynamics become very difficult to model in these regimes.

An even more challenging problem is recognition of sea state from onboard sensing. Precise weight,
shape, flexibility, and hull composition information is required to be combined with well-calibrated
inertial sensors from a variety of locations around the vehicle. For seas with a dominate wave
direction and steady total wave energy, this may be possible in real time. However seas are often
mixed, meaning model-based methods may fail in these regimes—precisely the ones requiring the
most careful guidance, navigation, and control. One can imagine that an autonomous vehicle may
employ the same tricks that humans do without fully modeling the sea state (e.g., turning and
adjusting speed to “head into” waves), but methods for detecting or predicting safe speeds and
directions from onboard sensor data do not appear to be well studied. It is our opinion that providing
a solution for sea-state estimation onboard with the sea-state reactive planners receives far less
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funding than it deserves and would go a long way to improve the operational reliability of seaborne
autonomous systems in littoral or stormy environments.

Without handling these above challenges, no system can provide true autonomous navigation
and hazard avoidance in the real world, and ours is no exception. What we have provided should be
considered an automated test range operation vehicle software suite with some promise for real-world
use. We hope that the computational simplicity and clear composition of algorithms and discussion
of gaps presented here inspires future work.

With the conclusion of this work, several application-specific problems remain. First, the goal
of reducing the offsets between vehicles during transit poses a significant technical challenge. The
close proximity leaves less room for control errors and requires much tighter synchronization of all
the vehicles” motion plans. Without explicit communication, it might be required that each vehicle
more accurately predict the motion of the others’ to form a safe motion plan such as Alonso-Mora
et al. (2013). The need for improved prediction and planning accuracy, including nonlinear effects
from sea state, will at minimum require the use of more computationally expensive solvers.

Ideally, a single operator could control a nearly arbitrary amount of test vehicles. Computationally
speaking, the architecture we have discussed scales easily with swarm size. In our implementation,
the most computationally costly step was trajectory generation (Problem 2), but this does not
change as the number of agents changes. We have verified ORCA /RVO for 40 agents and found
no significant slowdown (nearly linear scaling). For larger swarms, the main bottleneck in this
framework is the assignment step in Problem 1, which scales quadratically with n. Still, we
expect good performance on modern hardware / software well beyond the current field test or
demonstration sizes of dozens of simultaneous agents. Addressing scalability without requiring
additional communication or exchange of information will remain a key challenge.

In closing, and based on the experiences in this program, we assert that the control of multiple
vehicles using high-level commands (e.g., “Move in Echelon Formation to this Position”) has been
demonstrated at high enough technology readiness to be considered commoditizable. The remaining
problems are adjacent to the formation control and planning problems, especially operational readi-
ness in noncooperative environments (mostly a sensing problem), cohabitation with manned vehicles
(rules-of-the-road and predictability), and extensions to high sea states (a sensing and planning
problem). Additionally, there is nothing in our architecture or algorithms that prohibit use of 3D
coordinates or alternate motion models, meaning that aircraft formations (or joint aircraft/ground
teams) can be easily accommodated, though this is clearly not at a high technological readiness.
Furthermore, the emphasis in this work on formation reshuffles, maneuvers, and crossing formations
is applicable for semi-controlled environments at present, such as convoys, traffic highways, test
ranges, and the like.
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Appendix A. Simulation Results

The following pages contain the rest of the simulation results for the formation switches listed in
Table 2.
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Appendix B. Comparison of 2018 Observed to Simulated Times
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Figure 24. Normalized makespan of 37 formation switches. Normalized makespan of field tests /\;Itest (blue,
median = 4.0) and normalized makespan of simulations My, (green, median = 2.6). Ordered by Me;. Makespans
are normalized by lower-bound makespan Mg.

Appendix C. Tables

Table 1. Convergence times (summary).

- With priorities ORCA only
Min 63.2 63.2

1st Qu. 117.4 123.4

Med. 138.4 157.0

Mean 138.6 163.4

3rd Qu. 164.1 196.2

Max. 234.0 300.0
Timeouts (300s) 0 3
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Table 2. Formation switch makespan: July 2018 test. Purple and blue colors indicate slower and faster formation
switches, respectively. Tests are grouped by the starting and ending formation speed ratios (first column) and
ordered by increasing normalized test makespan Mtest. *adaptive formation switch. The full runs are completely
plotted in Appendix A.

Speeds Formation switch Heading Miest Mg, Mg

(knots) From To (degrees) (mm:ss) NMie: M
10/20 Wedge Line 2 135 00:54 2.0 2.0
10/20 Line 1 Line 2 135 01:02 2.1 15
10/20 Poly 1 Poly 2 180 00:46 25 2.6
10/20 Cup1 Cup 2 135 00:25 3.8 2.0
10/20 Wall 1 Wall 2 135 00:24 5.6 2.1
10/20 3-way shuffle 1 3-way shuffle 2 315 00:30 6.6 4.2
15/25 Line 1 Line 2 135 00:53 2.3 1.8
15/25 Wedge Line 2 135 00:44 2.9 2.4
15/25 Wedge Line 2 135 00:44 4.0 2.4
15/25 Poly 1 Poly 2 100 00:36 4.0 3.3
15/25 Wedge Line 1 315 00:18 4.3 3.9
15/25 Wall 1 Wall 2 135 00:18 5.2 3.0
15/25 3-way shuffle 1 3-way shuffle 2 315 00:24 5.4 3.4
15/25 Cup 1 Cup 2 270 00:19 5.6 25
25/35 Echelon left File 2 310 00:29 1.6 1.3
25/35 Echelon right File 1 90 00:29 1.6 21
25/35 File 1 Echelon left 315 00:24 1.7 4.8
25/35 Echelon left* File 1* 315 00:21 1.9 1.4
25/35 Line 1 Wedge 270 00:12 25 2.2
25/35 Line 1* File 1* 270 00:21 2.7 1.9
25/35 Line 1 Wedge 115 00:12 2.7 2.2
25/35 Wedge Line 2 135 00:33 2.7 3.2
25/35 Line 1* Wedge* 310 00:12 2.8 2.2
25/35 Vee Echelon right 90 00:25 2.9 3.1
25/35 Vee* Echelon left* 315 00:24 2.9 15
25/35 Line 1 Line 2 315 00:44 31 21
25/35 Poly 1 Poly 2 100 00:25 4.6 5.2
25/35 Line 1 Wedge 135 00:12 4.9 2.2
25/35 File 1* Line 1* 315 00:21 5.6 3.7
25/35 Wedge Vee 270 00:24 6.5 6.0
25/35 Wedge* Vee* 135 00:19 6.6 6.3
25/35 Wedge Line 2 315 00:33 6.7 3.2
25/35 Wall 1 Wall 2 135 00:12 6.9 3.4
25/35 Cup 1 Cup 2 330 00:13 7.7 3.2
25/35 File 1 File 2 135 00:18 9.6 6.7
25/35 3-way shuffle 1 3-way shuffle 2 315 00:17 12.7 6.9
25/35 File 1 File 2 90 00:18 12.9 6.7

Median

10/20 31 2.1
15/25 4.1 2.7
25,35 3.1 3.2
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