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Abstract: Ground-penetrating radar mounted on a micro aerial vehicle (MAV) is a promising tool
to assist humanitarian landmine clearance. However, the quality of synthetic aperture radar images
depends on accurate and precise motion estimation of the radar antennas as well as generating
informative viewpoints with the MAV. This paper presents a complete and automatic airborne
ground-penetrating synthetic aperture radar (GPSAR) system. The system consists of a spatially
calibrated and temporally synchronized industrial grade sensor suite that enables navigation above
ground level, radar imaging, and optical imaging. A custom mission planning framework allows
generation and automatic execution of stripmap and circular GPSAR trajectories controlled above
ground level as well as aerial imaging survey flights. A factor graph based state estimator fuses
measurements from dual receiver real-time kinematic (RTK) global navigation satellite system
(GNSS) and an inertial measurement unit (IMU) to obtain precise, high-rate platform positions
and orientations. Ground truth experiments showed sensor timing as accurate as 0.8 µs and as
precise as 0.1 µs with localization rates of 1 kHz. The dual position factor formulation improves
online localization accuracy up to 40 % and batch localization accuracy up to 59 % compared to a
single position factor with uncertain heading initialization. Our field trials validated a localization
accuracy and precision that enables coherent radar measurement addition and detection of radar
targets buried in sand. This validates the potential as an aerial landmine detection system.
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Figure 1. The DJI M600 Pro (a) equipped with a custom GPSAR sensor payload (b) for landmine detection.

1. Introduction
Antipersonnel landmines are a massive obstacle in the pursuit of well-being in more than 55 affected
states and regions. Not only do they cause more than 4000 civilian casualties per year but also leave
thousands of hectares of land uninhabitable. The financial support for clearance has declined in
the last two years, even though ongoing conflicts have continued to cause additional contamination
(International Campaign to Ban Landmines, 2020). Recently, a novel detection method is being
investigated to survey suspected hazardous areas (SHAs) and eventually assist and accelerate
demining. This technology combines the mobility and ubiquity of MAVs, such as the MAV in
Figure 1, with the ground-penetrating capability of radar imaging (García-Fernández et al., 2020b).
In comparison to ground-based surveying and demining methods, such as metal detectors, dogs, and
mine plows, MAVs can access any terrain from a safe distance and nondestructively search the area.
Our research shows that an MAV with a side-looking radar operating 2–4 m above ground with an
along-track velocity of 1 m s−1 could survey without further modification at least 500m2 h−1. This
high area throughput would allow demining operations to quickly narrow down larger SHAs so that
limited clearance resources can be deployed more effectively (United Nations Mine Action Service
(UNMAS), 2019).

While previous publications develop the radar imaging process on MAVs, this paper focuses on
the autonomous navigation and localization of such a system. Both capabilities are prerequisite
to generating high-quality GPSAR images. This research describes a completely integrated system
where the user is able to specify a georeferenced GPSAR mission that the MAV then autonomously
executes. After landing, the MAV automatically computes precise radar antenna positions from
synchronized GNSS and IMU measurements. These positions are input to the radar imaging process.
The accompanying video1 summarizes the system capabilities. In the short term, this system allows
executing repeatable measurement campaigns to further develop GPSAR imaging. In the long term,
automation will open the system to a broad range of users since complex system features are
combined into simple operating elements. Besides the overall functionality, the system includes
several extensions to the state of the art in sensor interfacing, state estimation, and trajectory
generation that are described in this paper.

1 Watch the system summary video: https://youtu.be/EfDhFKg5GEk
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• A low cost, lightweight, temporally synchronized and spatially calibrated sensor unit. The
timing synchronization has an accuracy of 0.8 µs and precision of 0.1 µs with respect to GNSS
time and allows IMU rates of 1 kHz.

• An extension to the Georgia Tech Smoothing and Mapping Library (GTSAM) framework to
fuse IMU with multiple GNSS receivers in a fixed-baseline configuration. The estimator includes
explicit GNSS antenna phase center calibration. The modeling advances improve estimation
accuracy by 59 % over single GNSS receiver fusion.

• Dynamically feasible linear and circular GPSAR trajectory generation to ensure informative,
uniform radar data sampling.

• Providing all software components open-source listed in Table 2 at the end of the document.

We organize the remainder of the paper as follows. Section 2 sets our contributions in the context
of related work. Section 3 defines the notation used throughout the paper to describe the kinematic
relations of the system’s sensors. Section 4 gives an overview of the GPSAR image formation
process, and the implications this sensor modality has on the system design. Section 5 describes
the system operation overview as well as the hardware setup. Section 6 summarizes the autonomous
mission generation, which includes the GPSAR trajectory generation framework. The novel sensor
time synchronization framework is described in Section 7. In Section 8, we present our localization
algorithm that fuses IMU and GNSS measurements. Section 9 presents the system results which
demonstrate the effectiveness of the navigation and localization pipeline and validate the detection of
buried objects. Finally, we conclude the system development and discuss future research directions.

2. Related Work
Ground-penetrating radar (GPR) is a complementary sensor to electromagnetic induction (EMI) for
landmine detection. In particular its ability to discriminate low metal content makes it an attractive
asset (Daniels, 2009). Synthetic aperture radar processing further improves cross-range resolution
of GPR enabling 3D imaging of centimeter-sized objects. GPSAR in side-looking or forward-looking
geometry has been integrated onboard Unimogs and other military ground vehicles (Wang et al.,
2008; Peichl et al., 2014). Aerial vehicles offer considerable advantages over ground vehicles,
particularly for demining where there is a need to cover large, inaccessible areas and avoid interaction
with the ground. The Minesweeper demonstrator project proposed the use of GPSAR mounted
on a crewed inflatable airship (Cristoforato et al., 2000). The project even conducted field tests
in Kosovo but publications, in particular, regarding radar results, have been sparse since then
(Cramer, 2001). A first uncrewed aerial vehicle (UAV) was later proposed by (Moussally et al.,
2004). The authors integrate a GPSAR payload on a Schiebel CAMCOPTER. Their GPSAR system
provides GNSS-inertial state estimation and stripmap and circular data collection capabilities to
enable buried object detection on U.S. Army test sites. This system was commercialized and is
available today as part of (Mirage Systems Inc., 1984). However, no further developments have
since been shared with the research community, and we have no information that this system is
actively used in humanitarian mine action. We suspect that the platform they propose is still too
large and expensive to be attractive for the humanitarian demining market. As of today their system
operates at 150 m flight altitude, and a CAMCOPTER has more than 3 m rotor diameter and weighs
200 kg (Schiebel Corporation, 1997). This is not only a logistical hurdle but also makes it unsafe to
inspect cluttered unstructured terrain at low altitude. However, such a system may still be applicable
in a civilian radar imaging context, where this flight limitation is not as critical (Frey et al., 2021).

In the humanitarian demining context, today’s ambition is to integrate GPSAR on even smaller,
affordable, programmable, globally available, electrically powered MAVs. These vehicles can operate
in inaccessible, cluttered environments which increases their application range significantly over
larger vehicles (Fang et al., 2017). Furthermore, they are small and in total weigh approximately
10 kg which simplifies transport and offers safer deployment. Also the hardware cost of less than
ten thousand USD accelerates research and makes application in humanitarian mine action more
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realistic. Finally, open access research results offer the possibility of wider adoption and rapid,
branched development of such systems around the world. However, the miniaturization also raises
new questions. Smaller sensors have to be developed and integrated. Localization and imaging
processes have to be adapted to the new sensors and low-altitude flight characteristics. And new nav-
igation methods have to be developed to make full use of the precise, autonomous flight capabilities
of MAVs for radar imaging. Multiple research groups tackle these challenges simultaneously (Fasano
et al., 2017; Colorado et al., 2017; García-Fernández et al., 2018; Schartel et al., 2018; Schreiber
et al., 2019; Esposito et al., 2020; Šipoš and Gleich, 2020; Bekar et al., 2021; Svedin et al., 2021).

(García-Fernández et al., 2018) have been the first to present a complete GPSAR system that
can map buried objects with an MAV. Their system has a downward-looking radar and uses RTK
GNSS to localize in the horizontal plane as well as light detection and ranging (LiDAR) for ground
distance measurement. The second iteration of their system improves data collection, localization
and radar imaging (García-Fernández et al., 2019). In particular, they update their GNSS and radar
hardware, implement autonomous waypoint navigation, and introduce radar subsampling to cope
with nonuniform and inaccurate in-flight data collection. The third iteration further reduces ground
surface reflection by applying singular value decomposition filtering and deploys a dual-channel
radar to reduce clutter (García-Fernández et al., 2020b). To the best of our knowledge, the system
presented in our work is the only other complete MAV-GPSAR system that has shown repeated
buried object detection (Heinzel et al., 2019; Schartel et al., 2020a; Grathwohl et al., 2021).

Our system has a different operation principle than the system presented by (García-Fernández
et al., 2020b). The GPR is mounted in a side-looking geometry which reduces ground reflections but
also has implications on the navigation. First, the ground distance, necessary for terrain correction in
the GPSAR process, cannot be measured with a downward-facing LiDAR. Instead, we implement
a two-step approach, where we first perform an optical survey flight to create a digital surface
model (DSM) and then fly the georeferenced GPSAR mission. Alternatively, the terrain model can
be determined in the same flight with interferometric synthetic aperture radar (InSAR) (Burr et al.,
2021). Second, the side-looking view point geometry changes the data collection. A downward-
looking system has a similar field of view as nadir camera or LiDAR setups. It can thus utilize
existing implementations of autonomous waypoint control and coverage path planning to collect
radar measurements. On the contrary, the flight path for a side-looking geometry is horizontally
offset from the surface patch that is being investigated. Thus special flight paths are necessary. Our
system implements circular and stripmap trajectories that can be combined in an arbitrary fashion
to illuminate the desired surface, increase the synthetic aperture length, and provide different view
points. Despite these two key differences in the operation principle, we also approach localization
and navigation differently.

One main requirement for GPSAR imaging is high-precision localization of the radar antennas
in flight. In previous publications, we demonstrated repeated detections of buried landmines when
we fused total station theodolite position measurements with high-rate IMU measurements (Heinzel
et al., 2019; Schartel et al., 2020a). In this paper, we replace the total station with RTK GNSS
as it has better timing characteristics, operates without direct line-of-sight, delivers georeferenced
positioning and is more cost-efficient. Most importantly, it has proven to deliver similar quality radar
imaging results over multiple measurement campaigns in open fields (Schartel, 2021). The general
understanding is that GNSS is prone to errors due to multi-path effects, atmospheric interference
and satellite occlusion in complex environments such as cities, forests, and mountains. With the more
recent introduction of alternative GNSSs such as GLONASS, BeiDou, and Galileo, accuracy and
coverage have increased notably (Li et al., 2015). Furthermore, various developments on antennas,
receivers and navigation processors have improved multi-path rejection (Strode and Groves, 2016).
Commercial solutions are available that implement tight GNSS IMU fusion such as the APX-15
UAV by Applanix (Mian et al., 2015). While these systems are well integrated and would probably
deliver comparable positioning quality to our proposed system, the proprietary structure does not
offer the same flexibility and control as is available on our own hardware system. In our system we
have full control over the spatial and temporal calibration, the raw measurements and estimation
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algorithms. This leaves room for future integration of additional sensor modalities such as LiDAR
or vision, and allows for direct extensions to our work from the wider robotics community.

Our previous estimation algorithm was based on a Kalman filter, followed by a full factor graph
smoothing step (Schartel et al., 2020a). Now, we combine the state estimation into a single GTSAM
framework, where an incremental smoothing algorithm runs online during the flight and full inference
is computed after landing. It has been shown that incremental smoothing, in particular for systems
with highly nonlinear dynamics, such as rotary wing vehicles, performs significantly better than
filtering (Indelman et al., 2013). Furthermore, the factor graph formulation provides a favorable
formalism to include additional localization sensors in the future. The motion estimator proposed
in this paper is loosely coupled, i.e., the GNSS raw double difference measurements are prefiltered
into a single position measurement using commercial software before being fused with IMU linear
acceleration and angular velocity measurements. This design decision simplifies the development
process significantly, because the software handles difficulties such as multi-path, shadowing, carrier
phase ambiguity and switching between the RTK and satellite-based augmentation system (SBAS)
solution. Tightly coupled systems on the other hand would deliver positional constraints even in
underconstrained cases, for example when observing only two satellites (Schneider et al., 2016; Cao
et al., 2021). Furthermore, tight integration would allow more accurate uncertainty propagation of
the raw distance measurements and modeling of the frequency-dependent antenna phase centers.
To partially account for this error, loosely coupled frameworks often model the offset between the
IMU and GNSS antenna (Kaplan and Hegarty, 2005). We integrate this offset into the GTSAM
optimization framework which then permits the system to spatially calibrate the GNSS antenna
position relative to the IMU. Additionally, we extend GTSAM to include GNSS moving baseline
measurements, i.e., the RTK baseline vector between two GNSS antennas mounted on the vehicle.
Finally, we analyse the influence of the two measurement factors.

One remaining issue when fusing multiple sensor modalities is time synchronization, as drifting
or noisy time stamps usually break the modeling assumptions. (Ding et al., 2008) perform an error
analysis of time delay on GNSS-inertial navigation systems. They come to the conclusion that
time synchronization is particularly important in dynamically fast, self-calibrating systems with
high-precision sensors, i.e., exactly the robotic system described in this work. Timing errors may
occur due to varying clock speeds, protocol transfer delays, sensor exposure or computing capacities.
Robotic systems often time stamp sensors on different clocks and then translate the stamp from one
clock to the other by estimating the clock offset and skew. The time offset estimation can either be
based on comparing the same time stamps on two clocks (Eidson et al., 2002; Sommer et al., 2017;
Osadcuks et al., 2020) or based on the correlation of sensor motions, such as a camera and IMU
movement (Furgale et al., 2012; Li and Mourikis, 2014; Kelly and Sukhatme, 2014; Qin and Shen,
2018). More specifically, (Skog and Handel, 2011) propose a GNSS-inertial fusion algorithm that
self-calibrates the timing offset. Time translation in software only, however, does not solve the whole
sensor data acquisition problem. (Kelly et al., 2021) showed recently, that co-estimating time offset in
causal filters introduces inconsistencies and potentially worsens the estimation result. Furthermore,
even though the sensor data may be time stamped accurately, the sensor triggering could still happen
out of sync and indeterminately. This issue then needs to be handled by interpolating sensor data
as well as implementing stochastic cloning and complex buffering schemes to insert delayed sensor
data into the optimization framework (Roumeliotis and Burdick, 2002; Lynen et al., 2013; Cioffi and
Scaramuzza, 2020). Instead of handling sensor timing compensation after acquisition, a dedicated
hardware solution can trigger and time stamp sensor data from a single clock. Different designs
based on field-programmable gate arrays (FPGAs) or microcontroller units (MCUs) offer more or
less freedom to be extended to a custom sensor setup and GNSS synchronization (Kais et al.,
2006; Ding et al., 2008; Huck et al., 2011; Nikolic et al., 2014; Albrektsen and Johansen, 2018;
Tschopp et al., 2020; Faizullin et al., 2021b; Faizullin et al., 2021a). We base our work on the
open-source VersaVIS (Tschopp et al., 2020) sensor synchronization board. Here a SAMD21 MCU
triggers an IMU-camera setup and stores synchronized time stamps. This hardware setup offers a
wide variety of serial interfaces such as serial peripheral interface (SPI), universal asynchronous
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receiver-transmitter (UART) and inter-integrated circuit (I2C). We extend the hardware by adding
a high-resolution oscillator which we synchronize with respect to GNSS. Furthermore, our system
implements hardware-generated pulse width modulations (PWMs) that allow triggering multiple
sensor sources in parallel at desired GNSS time stamps. And we utilize the SAMD21’s hardware
capture capability to improve timing precision of sensor strobe signals.

Finally, GPSAR imaging is heavily dependent on the data collection process. While in prin-
ciple GPSAR can integrate measurements from anywhere along the trajectory, in practice over-
and undersampling, e.g., due to alternating velocities, causes artifacts in the radar image. This
effect has been studied by (García-Fernández et al., 2020a) who propose a post processing step
to subsample informative radar measurements and normalize the image. A complementary way
to improve sampling is to enforce constant velocity along the GPSAR measurement trajectory.
Available trajectory planners such as QGroundControl primarily focus on waypoint missions with a
rudimentary option to constrain the flight speed (Dronecode, 2021). These planners do not consider
platform acceleration limitations. This results in nonuniform sampling when changing directions
because the position tracking controller does not generate a smooth transition. Also geometric
primitives, such as circular segments, are not necessarily implemented. Our approach to mission
planning is based on polynomial trajectory generation. Rotary wing MAVs with a perpendicular
thrust vector are differentially flat. Their pose is fully defined by the position, heading and their
derivatives. Consequently, polynomial trajectories, defined in position, yaw, and time, are a suitable
representation to generate fully-defined, smooth trajectories (Richter et al., 2016). Because the MAV
state is defined at every step in time, dynamic feasibility can be enforced (Mueller et al., 2015).
Our approach uses these principles to generate uniform sampling measurement trajectories. The
trajectories have a predefined start and end time to mask the radar measurements. They enforce
constant velocity along circular or linear trajectories. And they are dynamically feasible with respect
to maximum thrust and rotation rates to enable precise tracking. In combination with robust altitude
tracking and waypoint control this leads to a navigation system that allows precise measurement
collection, even beyond visual line of sight.

3. Conventions and Notations
In this paper, coordinate systems are denoted by calligraphic capital letters, including I to represent
the world-fixed, inertial frame and B to represent the body-fixed frame rigidly attached to the vehicle.
A 3D vector is represented by a lower case letter with a leading subscript describing the coordinate
system the vector is represented in. Vectors have one or two right-hand subscripts for further
description. For instance, IrIB ∈ R3 is the vector from the origin of coordinate system I to the origin
of coordinate system B, represented in the coordinate system I. Similarly, BωIB ∈ R3 describes the
angular velocity of B with respect to I, represented in coordinate system B. Single right-hand
subscripts refer to vectors that are fully described by their direction and magnitude. IvB ∈ R3

describes the translational velocity of the origin of coordinate system B, represented in coordinate
system I. Irg ∈ R3 describes the direction of the gravitational field, represented in coordinate
system I. 3D rotations and rigid transformations are represented by the capital letters R and T
respectively. RIB ∈ SO(3) indicates the orientation, TIB ∈ SE(3) the orientation and translation
of frame B with respect to reference frame I. We use passive rotations and transformations to map
3D vectors from one frame to another. For example, IvB = RIB BvB maps the velocity represented
in frame B to frame I.

4. Synthetic Aperture Radar Imaging
Synthetic aperture radar imaging is the process of forming a high-resolution 3D image from a
collection of radar range measurements. Figure 2a exemplifies the idealized range response of a single
target. Typically, a single radar chirp contains not only one target but the sum of noisy responses
of multiple targets with different scattering characteristics. In order to filter out the 3D location of
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Figure 2. A back projection algorithm forms the radar image. Multiple radar range measurements are accu-
mulated into a 3D voxel grid to resolve the bearing ambiguity and mitigate noise. This process requires a well
defined measurement trajectory, accurate radar antenna localization and an accurate DSM.

prominent targets, the platform averages multiple measurements from different viewpoints gathered
along a measurement trajectory (see Figure 2b). Observing a radar target from different view points
resolves the bearing ambiguity and reveals the location of strong scatterers, which can include both
plastic and metal landmines. The particular back projection algorithm used in this work enforces
specific design decisions on the motion of the platform, the radar antenna localization, and the
generation of a DSM (Zaugg and Long, 2015; Schartel, 2021). In this section, we elaborate the radar
imaging process and identify the implications on the system design.

The system in this work has a side-looking single-input single-output radar. With each mea-
surement, the radar emits a frequency-modulated continuous wave (FMCW) that reflects at the
interface between materials with different permittivity. A frequency mixer creates the difference
signal between the still transmitting FMCW and its returning time-delayed copies. For a single
scatterer and assuming no antenna movement for the duration of the chirp, the difference signal
has a constant frequency depending on the distance to the object and the propagation speed of the
electromagnetic wave. An analog-to-digital converter discretizes the difference signal and a discrete
Fourier transform isolates the frequency components. The resulting frequency spectrum correlates
with the distance to all scatterers in the field of view.

In the next step, every single measurement is back projected into every grid cell of a 3D voxel
map to evaluate the complex pixel value A(IrIC) ∈ C of each cell located at IrIC ∈ R3, where
I denotes the inertial coordinate frame and C is the image cell center. Given the position of the
radar antennas with respect to the cell location and the electromagnetic wave propagation speed
in air and soil as well as possible refraction at the ground surface, the amplitude and phase of the
measured, range-compressed radar signal Sη is determined, see Figure 2a. The resulting signal at
the image cell location is multiplied with the negative expected response if a perfect point target
was located inside the cell and summed up over all measurements η.

A(IrIC) =
N∑
η=1

wη Sη e
−jφη , (1)

where N is the total number of measurements in one trajectory, wη is a normalization weight to
compensate for nonuniform sampling, and φη is the expected phase of the point target. This phase
depends on the radar antenna position, the location of the imaging cell, and the DSM defining the
interface between air and soil and thus the expected wave propagation time.
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The algorithm has the following assumptions to perform range estimation and obtain focused
images:

• an exact pose estimation TISi of the transmitting and receiving radar antennas,
• an exact DSM,
• an exact model of soil permittivity and ground refraction.

These assumptions often lead to the conclusion that the range of the antenna to the target needs to
be known within 1

16 or 1
8 of the wavelength, which in our case would be less than 10 mm (Schartel,

2021; García-Fernández et al., 2018). Otherwise, the coherent addition in Eq. (1) will not correlate
due to the radar signals being out of phase for the same target observed from different viewpoints.
In practice, however, the algorithm can image targets with less accurate range estimation. In the
case of less accurate antenna position estimates, biases in the range estimate will split the energy
of a single target across multiple image cells and cause defocus or smearing. The goal of this work
is to minimize the errors that occur due to radar antenna positioning. In the next section, we
provide an overview of our complete airborne GPSAR system. In Section 6, we introduce vehicle
navigation principles that enforce uniform sampling of target cells from different view points as well
as accurate trajectory tracking control. In Sections 7 and 8, we address time synchronization and
vehicle localization to improve the position estimation of the radar antennas.

5. System Overview
Our system can generate georeferenced aerial imaging products as well as execute low-altitude
GPSAR missions. This requires a specific hardware setup as well as mission workflow to efficiently
combine both functionalities into a single system.

5.1. MAV Platform Setup
Our MAV setup consists of a commercially available DJI M600 Pro platform equipped with a
custom sensor pod payload. The sensor pod holds all components that are necessary to implement
the airborne GPSAR. We divide the setup into an upper compartment, that includes all processing,
communication and interoceptive sensing (Figure 3a) and a lower compartment holding all extero-
ceptive sensors (Figure 3b). At the center of the upper compartment is an UP Squared single board
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(b) Bottom view of sensor payload.

Figure 3. The sensor pod holds all sensors necessary for optical and radar imaging as well as platform localization
and control. The carbon tube construction fixes the radar antennas in place such that the computer-aided design
(CAD) model fully defines the position and orientation of the antenna phase centers with respect to the IMU.
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Table 1. Component list of the landmine detecting MAV. The ID refers to the labels in Figures 1 and 3.
ID Item Description Rate
a DJI M600 Pro Hexacopter with ROS onboad SDK -
b Sensor payload Sensor pod (prepreg carbon, milled alloy, nylon 3D print) -
c UPS-APLP4-A20-0864 Onboard processing unit -
d VersaVIS Sensor interface based on SAMD21 MCU -
e ADIS16448BMLZ Industrial grade MEMS IMU 1 kHz
f Piksi Multi reference RTK GNSS position receiver 10 Hz
g Piksi Multi attitude RTK GNSS moving baseline receiver 5 Hz
h RFD868x Long range RTK GNSS correction modem -
i Power distribution board 16 V to 27 V DC input, 5 V, 12 V, and 24 V DC output -
j US-D1 24 GHz radar altimeter 100 Hz
k LIDAR-Lite v3HP LiDAR altimeter 10 Hz
l BFLY-PGE-31S4C-C Global shutter 3.2 Mpx color camera 2 Hz
m Edmund Optics #35-139 6 mm fixed focal length lens -
n Custom radar 1 GHz to 4 GHz FMCW ground-penetrating radar 200 Hz
o Horn antennas Transversal electromagnetic horn antenna for GPSAR -
- 33-HC882-28 Helical triple band GNSS antennas -

computer (c), sufficiently powerful to log the sensor data, compute the online navigation solution,
and control the MAV through its autopilot and robot operating system (ROS). Next to it is the
VersaVIS (d), an MCU with peripherials to interface the sensors. The IMU (e) and two GNSS
receivers (f) and (g), together with two helical triple band antennas, and the corrections modem (h)
form the basis of the high-precision navigation solution necessary for exact platform localization. All
components are powered by a single power board (i) capable of converting the MAV’s 18 V power
supply from the onboard batteries to 5, 12, and 24 V. On the bottom of the sensor pod the radar
altimeter (j) and LiDAR altimeter (k) measure the platform height above ground level (AGL). The
camera (l) and lens (m) create aerial imagery to build a photogrammetric map for path planning
and radar imaging. Next to them, the custom 1 GHz to 4 GHz FMCW radar (n), and its four horn
antennas (o) with different polarization direction are used to create GPSAR images (Burr et al.,
2018). The four antenna phase center locations with respect to the IMU BTBSi for i ∈ {1, . . . , 4}
are well defined through the CAD. The camera pose with respect to the IMU BTBS5 is determined
with a calibration software (Furgale et al., 2013).

5.2. Mission Overview
The complete system setup, shown in Figure 4a, includes the copter with payload, an RTK base
station that supplies WiFi, 4G communication and RTK corrections, a survey station to measure
geodetic ground control points (GCPs) and an operator laptop running ROS to monitor the platform
status and select, configure and start the autonomous mission. For safety, the operator can always
interrupt a mission with a remote control (RC). The mission itself can be planned in the field
or in the office on the operator laptop with respect to a georeferenced map. Figure 4b shows
two example missions consisting of concatenated motion primitives, e.g., circles or lines or an
automatically generated boustrophedon coverage pattern (Bähnemann et al., 2021). After surveying
the RTK GNSS base station position, the mission is executed autonomously with all processing and
data logging happening on board the platform controlled by the finite-state machine depicted in
Figure 4c (Pradalier, 2017). The finite-state machine starts sensor recording and takes off the MAV
automatically. The platform ascends to a collision-free altitude, e.g., 30 m, and transitions to a
location above the start of the mission. It then descends to the mission altitude and executes the
preplanned trajectory. After finishing, the platform transitions back to high altitude, returns to the
take off position and automatically lands. After landing the system post processes the sensor position
batch solution. The sensor and positioning data are downloaded from the onboard computer and
passed to the optical or radar imaging processor.
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(c) The finite-state machine controlling the autonomous mission execution.

Figure 4. An overview of the system setup, mission planning and execution. The operator plans the missions
offline and the MAV executes the flight and sensor logging autonomously.

6. Navigation
According to the back projection Eq. (1), the radar response of a single radar image cell is the
weighted sum of all radar measurements illuminating that cell. In order to observe all targets in
a scene and simplify the weighting, it is important that the MAV illuminates all cells uniformly
and from different view points. For this purpose we generate smooth, constant velocity radar
measurement trajectories as well as a trajectory tracking controller that allows terrain following
control.

6.1. Polynomial Trajectory Generation
Typical radar imaging modes are stripmap and circular GPSAR. Stripmap refers to flying over the
target area along a straight line, while in circular GPSAR the platform orbits the target area with
the radar pointing towards the center. Our trajectory generation framework allows combining these
two imaging modes in an arbitrary fashion as shown in Figure 4b. The trajectories are formed based
on high-level user input and are automatically transformed into continuous, smooth, and feasible
polynomial trajectories based on a differentially flat multirotor model (Richter et al., 2016; Burri
et al., 2015). For example, in Figure 5, a user defines a circular arc by its center C, radius r, start
angle ψs and subtended angle θ, as well as altitude, platform velocity and heading while flying along
the circle. In an intermediate step, this user input is converted into waypoint constraints that serve
as polynomial support vertices. In the case of the circle, these are M + 1 vertices equally spaced
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(a) User interface.

Acceleration segment

Deceleration segment

Constant velocity

(b) Dynamically feasible circular trajectory.

Figure 5. The user plans continuous, smooth and feasible polynomial measurement trajectories (orange) via
high-level inputs. A trajectory fully defines the MAV position and orientation (coordinate frames), velocity (blue
arrows) and acceleration (red arrows) at every time step during the mission.

along the perimeter. M is computed automatically as

M =

 θ

arccos
(

2 (1− d)2 − 1
)
, (2)

where d ∈ (0, 1) is a parameter that describes the relative deviation of the vertices approximating
the circle from an actual circle. In the case of a straight line the support vertices are simply the start
and goal point of the line. Once the support vertices’ positions have been defined, their velocity,
i.e., the first derivative of the polynomial, is set to the user input velocity. In the circular case, this
is angled tangentially to the trajectory, while in the stripmap the velocity vector points towards
the next waypoint. All other derivatives, depending on the maximum polynomial degree, are set
to zero, as the platform should move with constant velocity along the measurement trajectory.
Similarly, the heading polynomial is fully constrained by pointing into the direction of the velocity
vector. Furthermore, the segment transition times between two vertices are fully defined by the path
length and constant velocity. The constrained vertices and segment times completely describe the
polynomial coefficients and thus the full desired state of the MAV at every time.

Every measurement trajectory is started from rest. In order to bring the platform up to
speed at the first vertex and slow it down after the final vertex we introduce acceleration and
deceleration segments. At both the start and stop positions, an additional vertex is connected
to the measurement trajectory. The time allocation of this segment is unknown and subject to
physical feasibility constraints of the platform. A binary search minimizes the segment time such
that the acceleration and deceleration motion is as short as possible but still feasible with respect
to minimum and maximum thrust, velocity, and rotation rates (Mueller et al., 2015). Similarly,
consecutive measurement trajectories are connected by rest-to-rest trajectories using the minimum
segment time search.

6.2. Tracking Controller
Figure 6 displays the control loop that runs on board the MAV. The finite-state machine has two
options to control the flight of the MAV. If the goal is to go as fast as possible from one waypoint
to another, e.g., in the transition maneuver, it can directly send the desired position pref and
heading ψref to the tracking controller. If smooth, well-defined trajectories are desired, it can send
polynomial missions as described above to the controller. The controller continuously evaluates the
desired position, velocity vref , acceleration aref , heading, and yaw rate ψ̇ref , and compares it to the
current position, velocity and acceleration estimated by the DJI autopilot (p, v, a) to compute the
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Figure 6. The platform control loop. The finite-state machine switches between trajectory tracking or waypoint
tracking and between control at GNSS altitude or AGL.

controlled translational velocity vctrl and yaw rate ψ̇ctrl.

vctrl = Kp (pref − p) +Kv (vref − v) +Ka (aref − a) , (3)
ψ̇ctrl = Kψ (ψref − ψ) +Kψ̇

(
ψ̇ref − ψ̇

)
, (4)

where Ki are user-defined gains. The reference trajectory and DJI state are represented in a local
Cartesian east-north-up (ENU) coordinate system that is set by the DJI autopilot at the start of
the mission. A formal introduction of the DJI ENU frame and DJI body frame with calligraphic
letters is omitted for brevity. Note that since we are sending velocity references to the autopilot, the
position error acts like an integration term and the acceleration error acts like a damping term on
the control loop. The control signal is passed through a limiter before being sent to the autopilot to
avoid infeasible input commands.

6.3. Altitude Estimation
Besides switching between trajectory tracking and waypoint tracking, the finite-state machine can
also switch between flying with DJI’s proprietary altitude estimate and flying relative to the ground
surface. The latter mode is particularly useful when flying radar missions at 2–8 m because the
absolute surface height is not necessarily known and we wish to take measurements from well-defined
altitudes. Furthermore, the regular DJI altitude is subject to large fluctuations which makes terrain
tracking control the safer option when flying below 8 m. As Figure 6 shows, the altitude estimator
fuses the DJI altitude with two different altimeter measurements to compute the height above
ground level pz,AGL. Multiple range sensors ensure robustness against outliers and sensor outages.

The implementation of the altitude estimator resembles a Kalman filter, with the change in DJI
altitude governing the process model. Both downward facing radar altimeter range pz,radar and
LiDAR altimeter range pz,lidar serve as independent measurement updates. Since large roll and
pitch angles invalidate the AGL measurements, different measures are taken to correct those. First,
the range measurements are corrected by the current roll and pitch angle to represent the vertical
distance to the ground assuming a plane environment. Second, their standard deviation is scaled
based on the attitude. Third, a cutoff attitude rejects measurements when either of the platform’s
roll or pitch angles exceed a threshold. Furthermore, the filter implements a Mahalanobis threshold
to reject outlier measurements. And the filter scales the sensor uncertainty based on the magnitude
of the measured range, because with increasing height objects in the field of view may invalidate
the measurement.

Figure 7 shows two example segments of the resulting altitude estimate. In the high-altitude
segment in Figure 7a, the filter shows robustness to outlier range measurements. The LiDAR does
not have the necessary maximum range and is prone to large roll and pitch angles during acceleration
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(b) Low-altitude estimation.

Figure 7. The altitude estimator during a typical mission over flat terrain. At high altitude, it rejects outlier
range measurements. At low altitudes, it compensates for DJI altitude drift, here allowing safe landing at 0 m.

movements. The radar altimeter has a relatively large measurement cone and at t = 406 s measures
the wrong AGL. The estimator completely ignores the invalid LiDAR measurments and only slowly
adapts to the radar altimeter measurements while trusting the DJI altitude most. In the low-
altitude segment in Figure 7b, when the distance to the surface decreases, the quality of the sensor
measurements improves. The filter trusts the range measurements more than the DJI altitude which
in this case allows safe landing at 0 m altitude. Note, that during this flight the DJI altitude drifted
about 50 cm from take off to landing. Relying only on the DJI altitude would thus potentially lead
to crashes at low altitude.

7. Time Synchronization
An important aspect in sensor fusion is time synchronization, that is, triggering and time stamping
sensors accurately through the same clock source. For high-quality GPSAR reconstruction, it is
particularly important to accurately time stamp the radar measurement with respect to the GNSS
and the IMU to determine the exact radar antenna poses with every chirp. In our system, all
navigation sensors and radar messages are time-stamped with a globally consistent time (GNSS
time) to allow accurate motion estimation. Figure 8 shows an overview of the timing modalities.

The GNSS provides the time reference of the system and has a typical precision of 50 ns (Kaplan
and Hegarty, 2005). Naturally, all GNSS measurements have a GNSS time stamp. All other sensors
are time stamped with respect to the onboard processing unit or VersaVIS clock. To synchronize
these two systems, one of the GNSS receivers emits a PPS signal. On the onboard processing
unit a Linux kernel interrupt captures the PPS signal and the chrony protocol synchronizes its
clock (Curnow and Lichvar, 1997). On the VersaVIS MCU the PPS continuously triggers a control
loop that synchronizes a clock derived from a 10 MHz external oscillator. All navigation sensors
and the RGB camera are triggered and time stamped through counters derived from the same
oscillator. This allows sensor timing precisions as fine as 0.1 µs with respect to GNSS as shown
in our evaluations below. The ground-penetrating radar system is not interfaced by the VersaVis
board, as the radar driver board has its own internal clock that is synchronized to the primary
onboard clock. It receives the onboard processing unit’s time through USB at the beginning of a
measurement stream and then open-loop propagates its internal clock. Due to the clock drift, this
accumulates a clock offset of approximately 10 ms during a 15 min mission which corresponds to
1 ppm.
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Figure 8. Top view of the sensor pod overlayed by the sensor timing overview. All sensors are time stamped
with respect to GNSS time. The radar receives the current GNSS time from the onboard processing unit. The
VersaVIS directly synchronizes with respect to the pulse per second (PPS) and time stamps and triggers all other
sensors.
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(b) A typical synchronization response with 2σ -bounds.

Figure 9. A PPS driven control loop continuously steers the VersaVIS clock offset from GNSS time to zero.
The controller modifies the frequency of an external oscillator that drives the clock.

7.1. VersaVIS to GNSS Synchronization
The VersaVIS has an internal record of time by counting the pulses coming from the 10 MHz external
oscillator on a 24 bit timer/counter for control (TCC). The first PPS pulse in conjunction with its
National Marine Electronics Association (NMEA) time and date sentence initializes this process.
The TCC then wraps around every 107 ticks to increment one second. Synchronization delays on
the MCU introduce an initial offset between PPS and internally propagated time. Furthermore,
temperature changes and oscillator resolution cause a time varying clock drift. Hence, a 1 Hz control
loop steers the external oscillator frequency to drive the time offset to zero. Figure 9 shows the
closed-loop system that synchronizes the VersaVIS to GNSS time and a typical control response.

The key idea behind the synchronization mechanism shown in Figure 9a is that applying an input
voltage to the external oscillator changes its frequency and allows driving the difference between
internally tracked time and GNSS time to zero. With every captured PPS pulse an extended Kalman
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filter (EKF) estimates the current time offset τ , the constant nominal control voltage V0 to set the
oscillator frequency to exactly 10 MHz and the constant factor k that converts oscillator input
voltages to expected clock drift. The measurement input is the time difference between when a PPS
pulse was captured by the TCC and its actual time according to the NMEA signal. The following
nonlinear continuous-time state-space equations with state variable xclock, control input uclock and
measurement input zclock describe the system:

xclock =
[
τ V0 k

]T
, uclock = VDAC, (5)

ẋclock =

(VDAC − V0) k
0
0

+ w, w ∼ N (0, Q), (6)

zclock =
[
1 0 0

]
xclock + v, v ∼ N (0, R), (7)

where the digital-to-analog converter (DAC) voltage VDAC is the control input and w and v are
normally distributed, additive white noise with variances Q and R, respectively.

Given the full state estimate xclock, a linear-quadratic regulator (LQR) computes and sets the
control voltage VDAC to accelerate or decelerate the external oscillator to drive the estimated time
offset τ to zero. The optimal gain Kc is computed offline based on clock dynamics in Eq. (6)
discretized and linearized about the nominal state. The output voltage is clamped to remain within
oscillator control voltage limits.

VDAC = −Kc τ + V0. (8)

Typically, the control loop converges within 100 s seconds as Figure 9b shows. Here, the tracked
time on the VersaVIS has an initial delay of 6 µs. Thus the controller increases the input voltage
to accelerate the external oscillator. While the offset τ is settling, the control input VDAC settles
as well towards the nominal control voltage V0. During the course of the run, the controller keeps
alternating the control voltage stepwise to remain within zero time offset given the resolution of the
DAC.

7.2. Sensor Measurement Time Stamps
The synchronized TCC0 is the basis for the synchronization of all sensors that connect to the
VersaVIS peripherals. All TCCs, timer/counters (TCs) and the real time counter (RTC) count
the 10 MHz external clock ticks synchronously with the TCC0 to generate PWMs to trigger and
to provide capture channels to time stamp sensor measurements. Typically, the sensors supply
general-purpose input/outputs to start a measurement or indicate its exposure. Figure 10 provides
the timing schematics for all sensors that rely on the VersaVIS clock.

Figure 10a shows the image capture mechanism of the color camera. A PWM triggers the camera
exposure. The camera returns a strobe and the TCC captures start and stop to time stamp the
mid-exposure time. The time stamp and the incremented image counter are stored in a circular
buffer and sent to the onboard computer whenever possible. Based on the image number, the time
stamp is associated to an image that is sent to the computer via Ethernet (Tschopp et al., 2020).

Figure 10b shows the IMU synchronization. The TC generates a PWM that serves as an
external sampling clock to the IMU. Once the IMU has sampled its micro-electro-mechanical
systems (MEMS), it sends out a data ready signal that is captured on the VersaVIS external
interrupt controller (EIC). The data ready flag indicates that the measurement can safely be read
via SPI. The VersaVIS stores the measurement together with the trigger time in a circular buffer
and sends it out to the onboard computer.

The LiDAR synchronization shown in Figure 10c works similarly. The TC generates a PWM to
engage a measurement with known time stamp. After triggering, the MCU polls the I2C to receive
the associated range measurement. Both time stamp and measurement are stored in a circular buffer
and sent to the onboard computer.
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(a) The TCC0 triggers the color camera and captures its mid-exposure time. The onboard processing unit matches
exposure time stamps with images.
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(c) The TC4 triggers and stamps LiDAR measurements. The measurements are polled via I2C.
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(d) The radar altimeter does not have an external trigger input. It is continuously polled via UART. The
measurement time is retrieved from a RTC with ms precision.

TC5 Buffer
Event Time

Event Signal
External Event

Onboard
Processing 


Unit

Time

(e) The TC5 captures miscellaneous external events on a full resolution counter.

Figure 10. The time stamping and data retrieval mechanisms for the different sensor interfaces. Every sensor
has a dedicated counter that time stamps the data synchronously to the known external oscillator ticks.

The radar altimeter does not have a particular synchronization interface. Thus we poll the UART
when resources are available and time stamp the measurement via RTC as shown in Figure 10d.
Furthermore, our firmware provides an external event channel. Figure 10e shows how a TC captures
the external input and forwards the event time to the system. We use this mechanism to evaluate
the absolute timing accuracy of the proposed sensor synchronization scheme.
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(b) Time stamping error over time.

Figure 11. Time stamp accuracy evaluation. Our hardware-capture-based synchronization method reaches sub
µs accuracy. In comparison to the previous software-based method it shows better accuracy, precision, and
convergence time.

7.3. Timing Evaluation
We compared our MCU timing architecture to the original software trigger presented by (Tschopp
et al., 2020) both in terms of accuracy and precision. A 5 Hz external signal generator was used to
simulate a generic sensor strobe signal as depicted in Figure 11a. The rising edge of the signal was
time stamped on both firmware versions and on a ground truth Piksi Multi receiver which has a
timing accuracy of ±60 ns (Swift Navigation, 2019). The resulting time stamps were compared to
the ground truth time stamps. The error over time in Figure 11b shows that our system is capable
of time stamping sensor data with a mean accuracy of 0.8 µs and a standard deviation of 0.05 µs.
The original firmware, which synchronizes only with respect to the onboard computer via universal
serial bus (USB) and not directly to PPS, reached a mean accuracy of 180 µs and standard deviation
of 312 µs after 300 s convergence time as opposed to 100 s. Our 0.05 µs precision shows that we can
consistently time stamp sensor data with a full clock resolution of 0.1 µs provided by the 10 MHz
oscillator. The remaining 0.8 µs time stamp offset probably results from a combination of signal edge
rise times, GNSS PPS signal accuracy and steady state offset of our synchronization controller.

Note that, in practice every sensor will introduce some small uncompensated delay in addition
to the 0.8 µs system accuracy. For example, the IMU requires 100 µs to sample and average its
MEMS (Looney, 2018). In the case of GNSS-inertial navigation this additional delay is negligible.
First, because other error sources, e.g., the gravity model and frame vibrations induced by rotor
rotations, outweigh such small timing inaccuracies (see Section 9.2). Second, because the timing
accuracy is still sufficient given the vehicle dynamics. According to (Ding et al., 2008), IMU time
delay ∆t does not significantly alter the localization result if it fulfills the following inequality:

|∆t| � |hpos (x, c)− zpos|
|
∫∫

j dt2|
, (9)

where the numerator represents the measurement innovation during a GNSS update and the
denominator represents the double integrated change in acceleration (jerk) in between two GNSS
measurements. Small timing errors are required either by high-accuracy sensors which lead to a
small numerator or highly dynamic systems which lead to a large denominator. If we assume perfect
IMU integration and GNSS lever arm calibration, our system’s lower bound on the innovation
is determined by the RTK GNSS measurement error which is expected to be about 5 mm. The
maximum jerk we determined in regular operation was about 100 ms−3. Double integration of the
jerk over a GNSS measurement period of 0.1 s generates a velocity of 0.5 m s−1. Thus the time
delay has to be significantly smaller than 10 ms, i.e., at most 1 ms. When considering half of the
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Figure 12. Timeline of 200 ms synchronized sensor data time stamps. The vertical red line indicates simultaneous
capture of all sensors but the polled radar altimeter at GNSS time stamps. The IMU is sampled uniformly every
1 ms.

100 µs IMU sampling period as uncompensated delay, 0.8 µs synchronization offset and 2σ-jitter of
0.1 µs, our system has an uncompensated delay of 50.9 µs between IMU and GNSS measurements,
approximately 1/20th of the required 1 ms. This margin prepares it for future use cases when
motion sensing will become more precise (smaller numerator) and greater flight dynamics will be
reached (greater denominator). Following the same calculation, the original firmware from (Tschopp
et al., 2020) with 180 µs synchronization offset and 624 µs 2σ-jitter has an expected maximum
uncompensated delay of 854 µs which would still be borderline sufficient.

Finally, Figure 12 shows that all sensors except the polled US-D1 radar altimeter can be
simultaneously evaluated at GNSS times due to the parallel running hardware triggering and capture
mechanism. This also includes an image exposure compensation scheme as presented in (Nikolic
et al., 2014) that ensures mid-exposure stamps of the camera at desired GNSS times. The parallel
processing leads to jitter-free sensor sampling with well-defined time stamps. For example, the IMU
is evaluated uniformly every 1 ms. As we will see in Section 8.1, having deterministic sensor time
stamps simplifies the fusion algorithm design.

8. Localization
For localization our robot uses a 1 kHz IMU, a 10 Hz RTK GNSS position receiver, and a 5 Hz RTK
GNSS moving baseline receiver. The IMU measures the linear acceleration BãB ∈ R3 and angular
velocity Bω̃IB ∈ R3 of the platform in body coordinates B, where B aligns with the measurement
axes of the IMU. The position receiver measures the position I r̃IP ∈ R3 of GNSS antenna P with
respect to inertial frame I. Without loss of generality we define frame I to correspond to a cartesian
frame with orientation aligned with the local east-north-up frame and origin at the RTK GNSS base
station position. The moving baseline receiver measures the baseline vector I r̃PM ∈ R3 between
GNSS antennas P andM rigidly attached to the platform, see Figure 13a.

These four measurements let us estimate the sensor pod’s position IrIB ∈ R3, velocity IvB ∈ R3,
and orientation RIB ∈ SO(3). The navigation state vector x concatenates these quantities. We
choose an IMU-centered navigation framework, where the state represents the state of the IMU
frame B. All three state quantities are expressed with respect to the inertial frame I. Apart from
the sensor pod state, we estimate sensor-model-specific calibration parameters c. These are the slowly
changing IMU accelerometer biases ba ∈ R3, gyroscope biases bg ∈ R3, the constant position receiver
antenna phase center BrBP ∈ R3 and the moving baseline receiver antenna phase center BrBM ∈ R3.
Note that, for simplicity, we assume a single phase center for each GNSS antenna, even though the
receivers utilize L1, L2, and L5 bands. Figure 13b shows an example self-calibration, where the
GNSS antenna position is refined during the flight to improve global accuracy of the estimate.

x =
[
IrIB, IvB, RIB

]T
, c =

[
ba, bg, BrBP , BrBM

]T
. (10)
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Figure 13. The localization algorithm estimates the 3D pose of the MAV and its sensors. It can self-calibrate
GNSS antenna positions and IMU biases.

The following continuous time model determines the propagation of the state vector x and
parameters c. The state is modeled based on kinematic relations, the bias parameters of the IMU are
modeled as Brownian motion with standard deviations σba and σbg, and the antenna phase centers
are assumed to be constant.

ẋ =

 IvB
IaB

RIB [BωIB]×

 , ċ =


ηba
ηbg
0
0

 , ηba ∼ N (0, σ2
ba I), ηbg ∼ N (0, σ2

bg I). (11)

The [·]× operator maps a vector to its skew symmetric matrix, IaB is the linear acceleration of the
base frame and BωIB its angular velocity.

Let X , C and Z be the sets of all discrete states, parameters, and measurements available up to
the current time T .

X = {xi}Ti=0, C = {ci}Ti=0, Z = {zi}Ti=0. (12)

Our estimator constantly reevaluates the maximum a posteriori (MAP) state estimates X ∗ and
parameter estimates C∗ with every new GNSS measurement available.

(X ∗, C∗) = arg max
(X ,C)

p (X , C|Z) . (13)

To solve this inference problem efficiently, we use the GTSAM framework (Dellaert et al., 2017).
The framework uses factor graphs to model the joint probability density function (PDF) p (X , C|Z).
Essentially, this decomposes the joint PDF into a product of simpler PDFs, where each PDF is
dependent only on a single sensor measurement zi ∈ Z. For Gaussian noise distributions the MAP
estimation problem of Eq. (13) can then be rewritten as the minimization of the sum of residuals

arg min
(X ,C)

∑
i

||hi(X , C)− zi||2Σi , (14)

where ||e||2Σ = eTΣ−1e is the squared Mahalanobis distance and Σ the covariance matrix correspond-
ing to the measurement. The measurement function hi defines how the states and parameters are
related to the respective measurement and needs to be defined for each sensor modality. Furthermore,
to minimize Eq. (14) the partial derivatives of hi with respect to the state x and parameters c need
to be known.
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Figure 14. Illustration of the factor graph.

Figure 14 sketches the graph structure of our estimation problem. The estimation process starts
with a prior factor fpx0 constraining the first state and fpc0 constraining the belief about the initial
calibration parameters. Discrete optimization variables xi and ci are introduced with every GNSS
measurement. These are modeled through unary position factors fpos

i and moving baseline factors
fmov
i . The odometry between the discrete times is determined by preintegrated IMU factors f imu

i .
In the following, we describe the formulation of each of these factors.

Prior Factor
The states and calibration parameters in the factor graph need to be initialized to start the iterative
smoothing. The TRIAD method determines the initial orientation of the platform (Black, 1964).
This method computes the rotation matrix between two coordinate frames, i.e., the orientation RIB
of the base frame B with respect to the inertial frame I, based on two linearly independent vectors
expressed in both frames. The first vector pair is the direction of gravity. Irg, the gravity vector
in inertial coordinates, points in the downward-direction. The corresponding gravity vector in base
coordinates, Brg, is the linear acceleration BãB measured by the IMU at standstill.

Irg =
[
0, 0,−1

]T
, Brg = −BãB(0). (15)

The second vector pair is the baseline vector between the two GNSS antennas. Irb, the baseline in
inertial coordinates, is measured by the GNSS moving baseline receiver I r̃PM . The baseline vector
in base coordinates is the difference between the attitude antenna phase center and position antenna
phase center, which is known approximately a priori from CAD data.

Irb = I r̃PM(0), Brb = BrBM(0)− BrBP(0). (16)

Following TRIAD, the initial orientation is

RIB(0) =
[

Irg
||Irg|| ,

Irg×Irb
||Irg×Irb|| ,

Irg
||Irg|| ×

Irg×Irb
||Irg×Irb||

]
·
[

Brg
||Brg|| ,

Brg×Brb
||Brg×Brb|| ,

Brg
||Brg|| ×

Brg×Brb
||Brg×Brb||

]T
. (17)

The initial position is determined from the first GNSS position measurement and the initial
position receiver phase center position.

IrIB(0) = I r̃IP −RIB(0) BrBP(0). (18)

All other parameters, i.e., velocity, gyroscope bias, and accelerometer bias are initialized to zero.
Again we assume the vehicle is stationary at startup. This also allows us to calibrate the IMU
gyroscope biases to zero at startup by averaging the first gyroscope measurements. The same process
cannot be assumed for the accelerometer because we cannot ensure a perfectly leveled platform. The
initial uncertainty is left as a tuning parameter.
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IMU Factor
The IMU measures the linear acceleration BãB and angular velocity Bω̃IB of the platform. Ignoring
effects due to earth’s rotation, the measurements are modelled as,

BãB = RTIB (IaB − Ig) + ba + ηa, ηa ∼ N (0, σ2
a I), (19)

Bω̃IB = BωIB + bg + ηg, ηg ∼ N (0, σ2
g I), (20)

where Ig is the gravity vector in inertial coordinates, ba and bg are the IMU biases modeled as
random walk in Eq. (11) and ηa and ηg are additive white noise with standard deviation σa or σg
respectively. The set of IMU measurements between two GNSS measurements are summarized into
a single preintegrated factor as described in (Forster et al., 2015).

Position Factor
The GNSS position receiver measures the distance between the inertial frame and position antenna
phase center I r̃IP . We can express the position of the position antenna as a function of the current
position and orientation estimate.

hpos (x, c) = IrIB +RIB BrBP . (21)

The nonzero partial derivatives (Dellaert, 2020, p. 6) are,

∂hpos (x, c)
∂IrIB

= I,
∂hpos (x, c)
∂RIB

= −RIB [BrBP ]× ,
∂hpos (x, c)
∂BrBP

= RIB. (22)

The partial derivatives show that the position measurement not only gives direct feedback on the
position estimate IrIB but, due to the influence of the lever arm BrBP , also indirectly measures
the orientation RIB under certain motions. Note that this factor holds for both the RTK GNSS
solution, which measures the baseline between the RTK base station antenna and rover antenna, and
the SBAS GNSS solution, which measures the position in the world-fixed WGS84 frame, under the
assumption that the RTK base station position is determined bias-free with respect to the WGS84
frame. Thus the estimator is robust to switching between the RTK fixed and the SBAS solution.

Moving Baseline Factor
Since the platform orientation from a single GNSS receiver is only observed under certain motions,
a second GNSS receiver is added that measures the baseline vector I r̃PM between two GNSS
antennas rigidly attached to the platform. This measurement gives direct information about the
orientation. The measurement is actually given at the local WGS84 tangent plane centered at the
position antenna P but we assume that for small distances from the inertial frame, this tangent
plane is parallel to the inertial frame’s east-north-plane. The resulting moving baseline measurement
function maps the current estimated difference of the GNSS antenna positions into in the inertial
frame.

hmov (x, c) = RIB (BrBM − BrBP) . (23)

The nonzero partial derivatives (Dellaert, 2020, p. 6) are

∂hmov (x, c)
∂RIB

= RIB [BrBP − BrBM]× ,
∂hmov (x, c)
∂BrBP

= −RIB,
∂hmov (x, c)
∂BrBM

= RIB. (24)

The first partial derivative states that the orientation perpendicular to the moving baseline vector, in
our case roll and heading, is directly measureable through the moving baseline factor. The other two
derivatives, similar to the last derivative in Eq. (22), indicate, that the GNSS antenna positions are
observable under orientation changes. This observability is validated in Figure 13b. Here the antenna
position estimate is plotted alongside the velocity of the base frame represented in forward-left-up
coordinates F . The antenna position is particularly well observed during fast forward flight at
t = 21 s and t = 405 s, i.e., where the platform tilts heavily to generate accelerations.
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8.1. Algorithm
The localization algorithm runs in three parallel processing threads. The highest priority is given to
the navigation thread (Indelman et al., 2013). This thread integrates incoming IMU measurements
given the latest available MAP state estimate and delivers a high-rate odometry estimate for control
purposes.

The second thread iteratively solves the inference problem stated in Eq. (13). Given the synchro-
nization between IMU and GNSS, and the fixed GNSS solution rate, the time stamps of new factors
are known a priori. When a new IMU measurement arrives, it is preintegrated into a new IMU factor
up to the next expected GNSS measurement time stamp. Once the IMU factor is completed, it is
inserted into the factor graph. The GNSS measurements typically arrive delayed and are inserted at
the respective positions into the factor graph. The solver is polled whenever a new factor is added to
the graph and the thread is available. We use ISAM2 with a configurable sliding window to reduce
inference time and bound graph size and thus relinearization efforts (Kaess et al., 2012).

The third thread can be called on demand, e.g., after completing the mission, and computes the
full batch solution for GPSAR mapping purposes. While running the sliding window estimator, the
program stores a copy of the full graph, the estimator solution, and all IMU measurements. When the
batch solver is triggered, it uses a Levenberg-Marquardt optimizer to find the MAP estimate given
the full graph and prior online solution. Additionally, it predicts intermediate states propagating the
stored 1 kHz IMU measurements. The sensor poses TISi , i.e., the ground-penetrating radar antenna
phase center and RGB camera poses, can then be evaluated given the known sensor locations with
respect to the IMU TBSi ,
TISi = TIB TBSi . (25)

9. Results
In this section we evaluate the state estimation accuracy and overall functionality of the proposed
system. As Section 4 lays out, the final application of airborne buried object detection is a function of
the flight path, antenna localization, knowledge of the terrain, and millimeter wave signal processing.
Thus, evaluating individual components with respect to the downstream task is impossible. Instead,
we design individual experiments that allow testing the components presented earlier in isolation.
The goal is to practically verify the correct implementation of each subsystem, set a system
performance benchmark, and last but not least determine system limitations and performance
margins. This methodology allows the reader to draw conclusions for future system designs.

In the first experiment, we validate the algorithmic soundness of the derived estimator in a ground
truth motion tracking setting. We demonstrate that the introduction of the second GNSS receiver
improves positioning accuracy, in particular for initialization. Furthermore, the experiment shows
that the full batch inference computed after landing improves overall estimation smoothness and
accuracy over online sliding window estimation. Following this, we conducted two field trials with
the GPSAR. First we present mapping of known radar calibration targets placed on the ground
surface. The experiments show an overall system sensitivity that allows identifying the scattering
characteristics of individual targets. The results also highlight the importance of accurate GNSS
antenna calibrations. Furthermore, the experiments suggest that the presented localization method
exceeds the resolving power of the underlying imaging solution. As a result of this we present and
evaluate a simple alternative solution to localize the radar antennas that still generates focused radar
images. Finally, we show the detection of buried metal can lids as a proof-of-concept for landmine
detection from an aerial vehicle.

9.1. Localization Ground Truth Evaluation
The dual GNSS receivers are one of the defining features of the factor graph-based localization
algorithm. In this experiment we evaluate their influence to the overall localization accuracy. In

Field Robotics, June, 2022 · 2:1028–1067



1050 · Bähnemann et al.

Rope

Motion Capture 
Markers

(a) Motion tracking setup.

Configuration Legend RMSE Improvement
Ground truth 0 mm 100 %
Batch (position + moving baseline) 4.24 mm 59 %
Batch (position only) 5.02 mm 52 %
Batch (position only + heading offset) 6.29 mm 40 %
Online (position + moving baseline) 6.74 mm 36 %
Online (position only) 9.41 mm 10 %
Online (position only + heading offset) 10.46 mm 0 %
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Figure 15. The localization ground truth evaluation using a Vicon motion tracking system. Batch estimation
and dual GNSS receivers improve the accuracy and precision of the localization algorithm.

particular, we show the benefits of GNSS moving baseline measurements for initialization and during
the online sliding window estimate. Since it is difficult to obtain outdoor ground truth position and
orientation measurements that are more accurate than the RTK GNSS used, we use a Vicon motion
tracking system to evaluate the state estimation algorithm (Vicon Motion Systems, 2014). Figure 15a
shows the experiment setup.

Motion capture markers are attached to the platform to measure the ground truth posi-
tion and orientation. The measurements simulate noise-free GNSS position and moving baseline
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measurements at 10 and 5 Hz, respectively. Due to limited flight space, platform motion is emulated
by swinging randomly on a rope for approximately 1.5 min. Before the experiment, the IMU,
GNSS, and prior noise models were tuned iteratively, with the goal of obtaining steady bias
and GNSS phase center estimates. In post-processing, we run the estimator multiple times with
different configurations: with two emulated GNSS receiver factors (position + moving baseline),
with only one emulated GNSS receiver factor (position only), and with one emulated GNSS
receiver where the initial state is offset by 5◦ in heading (position only + heading offset). The last
configuration resembles a setting where the platform was equipped with only one GNSS receiver
and a magnetometer was used for initialization. Besides the three different configurations we also
compare the full batch inference with the online estimator with a 3 s sliding window.

Figure 15c plots the complete trajectory over our experiment. At this scale, the different config-
urations (online, batch, only position measurements, position and moving baseline measurements
or with initial heading offset) cannot be distinguished. All estimates agree with the ground truth
position. Only the detailed view of the position estimates in Figure 15d reveals that the batch
estimation is always smoother than the online estimation. This is expected, since the batch optimizer
incorporates all measurements, future and past, while the online estimator only has knowledge of
past measurements. The jumps in the online estimation occur because of modeling mismatch between
the propagated IMU measurements and the emulated GNSS measurements, e.g., erroneous GNSS
phase center calibration, biases, noise models, and time delay. Note that these jumps are in the
order of millimeters.

Evaluating the error (Figure 15f) shows that the batch estimation incorporating both position
and moving baseline measurements achieves the best RMSE. Table 15b is sorted by ascending RMSE
and shows that batch estimation significantly improves estimation accuracy. One reason is that the
online estimator is subject to the availability of computational resources and thus has to rely on
IMU integration for longer periods before the factor graph is re-evaluated. Another reason is, again,
the additional information available to the batch optimizer. For example, the batch optimization
has a steady estimate of the IMU acceleration bias over the whole trajectory length exemplified
in Figure 15e. A converged bias estimate has a positive influence on the estimation accuracy.
An incorrect acceleration bias estimate leads to an attitude estimation error, since the gravity
vector is observed incorrectly. This also stresses the importance of (1) finding well-bounded initial
estimates for the GNSS’s extrinsic calibration and (2) fixing the gyroscope biases before startup to
obtain precise results. Equations (22) and (24) reveal that the dynamics of the antenna positions,
accelerometer and gyroscope bias are strongly coupled. Estimating all of them simultaneously
without good initial guesses would require complex platform movements and extremely accurate
modeling assumptions.

The RMSE analysis of Figure 15f and Table 15b also shows that incorporating moving baseline
measurements principally improves the accuracy, even when using it only for initialization (position
only). However, it is remarkable that the batch estimate with only position measurements is almost
as good as with additional moving baseline measurements. On the contrary, the online estimation
with moving baseline measurements is significantly more accurate than the online estimate with only
position measurements. We suppose that this is due to the influence of the position measurement
on the orientation estimate stated in Eq. (22). The orientation is observable under certain motions
due to the lever arm between IMU and GNSS antenna. The batch estimation with only position
measurements finds a good orientation estimate over all the estimates, while the online estimation
first needs to converge. In the case where the orientation is directly measured through the moving
baseline measurement, the online estimation can correct the estimate immediately.

Note that this motion tracker experiment does not allow us to draw conclusions on the accuracy
and precision of the localization estimate with actual GNSS measurements. Both simulated GNSS
measurements and the ground truth have been derived from the same Vicon measurements. This
generally biases the estimation towards the ground truth and correlates the position and moving
baseline measurements. Additionally, no noise has been added to the simulated measurements, which
is not the case for true GNSS measurements. On the other hand, it can be expected that the actual
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Figure 16. We placed radar calibration targets in a distinctive pattern on the ground. This allows radar back
projection independent of the ground surface reflection and soil properties and lets us draw conclusions about the
radar antenna positioning performance. (b) The corner reflectors and metal can lid produce distinctive patterns
in the radar image.

GNSS timing is better than the Vicon timing. In addition, the GNSS phase center position can
probably be determined more accurately than the Vicon marker positions with respect to the IMU.
Nevertheless, this experiment still lets us draw the following conclusions:

• batch processing always improves the pose estimation and should be used for mapping purposes;
• online pose estimation benefits significantly from GNSS moving baseline measurements;
• initializing the estimator as accurately as possible improves overall accuracy. This includes

orientation initialization from GNSS moving baseline measurements but also finding well-
constrained initial parameters for the gyroscope biases or GNSS antenna locations.

9.2. Radar Calibration Target Detection
To evaluate the quality of the radar imaging and thus the quality of the overall navigation and radar
antenna localization, we performed a well-controlled radar calibration target imaging experiment.
This experiment allows excluding environmental effects, i.e., the necessity for an exact DSM,
knowledge of the ground surface refraction and soil properties. Figure 16a shows a photo of the setup.
Four corner reflectors were placed on the ground in a square with approximately 2 m distance. In
the center of the square was a metal can lid. The targets are expected to reflect the radar waves with
certain characteristics. The corner reflectors, as depicted in Figure 16b, should show four distinctive
features along the approximate compass directions in the resulting radar image. The metal can lid
should show a point symmetrical reflection.

We used the RTK survey station to measure the targets’ ground truth position and the imaging
plane. The target positions are visualized in the georeferenced map in Figure 17a. The platform flew
two missions with six circles each with 15 m diameter centered around the targets. The platform
velocity was set to 0.5 m s−1 in the first flight and 1 m s−1 in the second flight. The flight altitude
increased from 2 m to 4 m AGL. To generate constant velocity circular trajectories, the platform
thrust was constrained to 9.81±1.00 m s−2, the maximum roll and pitch rate to π/12 rad s−1, and the
maximum yaw acceleration to π/2 rad s−2. Consequently, the automatically generated acceleration
and deceleration segments of the polynomial trajectory (see Figure 5b) were sufficient to reach
cruising speed at the circle entry and come to a stop after finishing the circle. Figure 17b shows the
velocity profile of one of the six circles at 1 m s−1.
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Figure 17. Radar experiment with known surface targets. The dedicated polynomial circular trajectories enforce
constant velocity and thus uniform radar sampling. This holds for slow and fast flights.

To generate the radar image for each mission, the radar measurements were masked along the
constant velocity circles based on the segment time stamps. As described in Section 6.1, we know at
the planning stage how long it takes the MAV to complete any part of the trajectory. This leads to
a constant velocity profile and thus a uniform sampling rate across all six circles. Figure 17c shows
that this holds both for slow and fast trajectories. The only additional radar measurement filtering
step was to exclude saturated radar measurements and the RC frequency band. For each circle the
coherent radar image was formed and for each individual flight all six images were added coherently
to form the final products.

Figure 18 shows the two resulting radar images at ground surface level with 1 cm cell resolution.
Despite the two flight paths in Figure 17a being offset horizontally by approximately 1 m due to
the DJI GNSS position control (see Section 6.2) and different reference velocities, both images in
Figure 18a and 18b are similar. This highlights the capability of our system to perform repeatable
experiments. The main difference is a greater amplitude in the slow flight due to almost twice as many
radar measurements back projected into the image. Furthermore, the corner reflector signature,
seen in the bottom right of both figures, shifts north-west by approximately 1.5 px (1.5 cm). This
systematic shift may be caused by radar imaging artefacts which emerge from the shifted flight
paths and the geometry of the corner reflectors (Moreira et al., 2013). Still, one can clearly identify
the four radar reflector locations and the location of the metal can lid in both images. A detailed

Field Robotics, June, 2022 · 2:1028–1067



1054 · Bähnemann et al.

8

9

10

11

14 15 16 17
8.1

8.2

8.3

8.4

8.5

16.2 16.3 16.4 16.5

Amplitude [dB]

9.2

9.3

9.4

9.5

9.6

15.4 15.5 15.6 15.7 15.8

Metal Can Lid Corner Reflector

216.8197.8191.3

(a) Radar image of flight 1 (0.5 m s−1) evaluated at ground surface level with our localization solution and
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(b) Radar image of flight 2 (1.0 m s−1) evaluated at ground surface level with our localization solution and
horizontally polarized antennas. The amplitude is cutoff at the top 2 %.

Figure 18. Both flights deliver comparable results with a greater amplitude in the slow flight due to approximately
twice the number of radar measurements. The similarity of the images shows system repeatability. The metal
can lid and the four corner reflectors are detectable. The details show a circular response for the can. The corner
reflectors create a well-defined signature with visible corners approximately along the compass directions and
surrounding antenna side lobes.

view on the individual targets reveals a point symmetrical response of the metal can lid and the
geometric pattern of the corner reflectors. In particular, the four corners stand out pointing towards
north, east, south and west. Furthermore, the center of the target has a strong response and the four
corner edges of the copper base plate stick out. This demonstrates the sensitivity of the proposed
system as well as the repeated localization precision to generate focused radar images. Additionally,
periodic circular bands show up around the target, these indicate the side lobes. In the remainder
of this section we will investigate only the second flight in detail.

In the next step, we performed an ablation study to investigate the specific impact of our batch
antenna localization algorithm. For comparison, we processed the radar returns using only the
localization solution provided out-of-the-box by DJI (DJI only) and the solution interpolated from
the raw DJI attitude outputs and the raw RTK GNSS positioning (DJI+RTK). We highlight the
differences in the resulting radar images by zooming in on a single corner reflector in Figure 19.
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Figure 19. Ablation study analyzing the radar imaging performance of different antenna localization solutions
in flight 2. Our GTSAM batch solution delivers the smoothest and possibly most accurate position estimation
result. However, a simple DJI+RTK solution is also sufficient for the radar imaging task if the transformations
between radar and GNSS antenna are known. The standalone DJI solution is not sufficient.

The differences between the three images are most prominent between the DJI only solution
and the other two which use RTK GNSS measurements. The radar image in Figure 19a does not
show a focused image in the expected target position. The pure DJI position estimation accuracy is
not sufficient to run the back projection algorithm. Figure 19d shows that the DJI only solution is
offset by about 20 cm from the RTK solutions in the horizontal direction. The altitude estimation
in Figure 19e shows an even more severe drifting offset of up to 70 cm.

On the other hand, both the DJI+RTK and our localization solution provide comparable radar
image quality. This is surprising because Figure 19f and 19g show that our batch estimation solution
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Figure 20. Analysis of system sensitivity to RTK GNSS receiver position offsets in flight 2. Both radar images
are generated given a 3 cm offset between the expected and true GNSS receiver position. Our solution is able to
perform self-calibration to account for this error, recovering a sharp radar image of similar quality to that shown
in Figure 19c.

is smoother and possibly more accurate than the DJI+RTK solution. This indicates, that the
downstream task of GPSAR imaging is not sensitive enough to resolve a few millimeters difference
in localization. The experiment also demonstrates that the DJI+RTK solution is an attractive
alternative to integrate GPSAR on an MAV in situations where our level of accuracy as well as
future sensor integration and self-calibration is not required. To obtain the pose of the individual
antennas with the DJI+RTK solution T̂ISi we solve the following kinematic chain:

T̂ISi = T̃ID TDSi = T̃ID TDB TBSi , (26)

where T̃ID is composed of the measured 10 Hz RTK position and interpolated DJI orientation
and TDSi describes the rigid transform from the RTK position antenna to the respective radar
antenna. Note that in our case the latter is obtained from a series of calibration efforts. TDB is
composed of the known rotation from the body frame to DJI frame RBD and our self-calibrated
RTK antenna position BrBP . TBSi is known from CAD. Obtaining this transformation accurately
is critical (Yanghuan et al., 2011).

To stress the importance of an accurate GNSS to radar antenna calibration, we investigated the
effect of an inaccurate GNSS receiver to base frame transform. In this case, we applied a 3 cm offset
in forward, left and up direction to the receiver antenna centers BrBP and BrBM and re-generated
the resulting radar images for the interpolated DJI+RTK localization solution and our localization
solution. Figure 20 shows a sharp contrast between the image quality from the two solutions. With
only the interpolated position and attitude measurements, the DJI+RTK solution has no way to
identify and correct for the inaccurate receiver position, resulting in a blurry radar image. Our
solution offers self-calibration in the GTSAM fusion, which is shown for this particular flight in
Figure 13b, and is able to recover a sharp radar image despite the initially poor GNSS receiver
position estimate.

Finally, we discuss the online and batch solution of our localization algorithm in flight. Figure 19f
and 19g show that the batch solution smoothes the online solution significantly, improving localiza-
tion precision. This is consistent with the Vicon motion tracking experiments in Section 9.1. However,
compared to the rope swinging experiment in Figure 15d, the jumps in the online estimate between
IMU integration and GNSS update are greater in flight. This indicates that additional effects such
as frame vibrations and RTK GNSS noise influence the estimate.

Summarized, this experiment lead to the following findings.

• Polynomial trajectory generation is an adequate technique to generate dedicated GPSAR
trajectories that enforce uniform sampling.

• Our self-contained positioning solution enables repeatable, high-resolution radar imaging.
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Figure 21. A georeferenced orthomosaic and DSM with 2.5 cm GSD created by our platform. The maps are used
to plan the circular GPSAR trajectory and compute the ground surface transition in the radar imaging algorithm.

• Interpolating off-the-shelf RTK GNSS and DJI autopilot attitude is also a viable positioning
solution for low-frequency coherent radar imaging.

• Calibrating the radar antenna positions accurately with respect to the GNSS antennas is
critical. Our self-calibrating algorithm helps to determine the GNSS antenna positions BrBP ,
BrBM to generate focused images.

• Batch estimation to improve localization precision has been confirmed in flight. Sensor noise
such as frame vibrations and GNSS measurement uncertainties may alter the estimation quality.

9.3. Buried Object Detection
Finally, we validated the whole system for buried object detection. The experiment environment is a
clean beach soccer field where we buried the same metal can lids as in the previous experiment. Four
outer targets forming a square were buried at a depth of around 2–5 cm and a center target was
buried at lower depth of around 19 cm. In a first flight, we collected georeferenced images using our
system at 45 m altitude. We created the orthomosaic and DSM in Figure 21 with a ground sampling
distance (GSD) of 2.5 cm of the environment using off-the-shelf photogrammetry software (Pix4D,
2021). The maps are georeferenced using a set of GCPs placed outside of the target area and surveyed
with our equipment.

In a second flight we performed the actual GPSAR survey from safe distance shown in Figure 22.
The platform flew six circles with 15 m diameter centered around the target area. The platform
velocity was set to 1 m s−1 and the flight altitude increased from 2 m to 4 m AGL over approximately
6 min. The dynamic constraints were identical to the previous experiment, enforcing constant
velocity along the circles. The collected radar responses, trajectory time stamp mask, and batch
processed radar antenna poses are forwarded to a compute cluster to perform the coherent radar
back projection algorithm. The permittivity of the soil was not modified and left at its default value
of εr = 8. The resulting radar image extends 7 m× 7 m and spans a volume from −0.3–0.1 m above
surface level with a resolution of 1 cm. Figure 23 shows the resulting GPSAR image at 3 cm and
13 cm depth as well as the root mean square (RMS) radar image cell magnitudes around the ground
truth position of the targets. The metal can lids buried at shallow depth can be detected in the
radar image. This validates that the system presented in this paper can potentially be used to detect
landmines.

The deep object shows the strongest response at 13 cm depth. The offset between the manually
measured depth and the peak radar response may be due to several confounding factors that make
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(a) Time lapse of an automated 6 min circular GPSAR trajectory with increasing altitudes.

Metal Can Lid (2-5 cm Depth)

Metal Can Lid (~19 cm Depth)

Circular GPSAR Flight

Legend

10

20

-10 0 10 20 30

(b) The buried target positions and executed radar trajectory.

Figure 22. Buried object detection experiment. The platform scanned a 7 m × 7 m patch without the operators
entering the field.

subsurface sensing especially challenging. These include unmodeled complex effects of soil moisture
and heterogeneity on the ground permittivity, digital surface map accuracy as well as errors induced
through the manual ground truth surveying process. As described in the experiment setup, we do
not calibrate εr to correct the depth.

To confirm that DJI+RTK presented in the previous section is a viable solution for buried object
detection as well, we repeat the imaging process. The result in Figure 24 resembles the result
obtained with our localization solution in Figure 23. This indicates that localization for GPSAR is
not the bottle neck anymore and other error sources outweigh. Possible significant error sources in
GPSAR imaging are clutter responses, modelling the millimeter wave propagation in heterogeneous
soil, the frequency dependent radar antenna phase center positions, and errors in the surface model.
Note that a dedicated localization fusion algorithm such as the one presented in this paper may
still give advantages over the DJI+RTK solution. It is extendable to additional sensor modalities in
GNSS denied environments, it can include self-calibration routines, and it has greater precision as
the previous section suggests. The latter may be relevant to other mapping modalities where greater
precision is required, e.g., high-frequency radar, or once the major modelling errors in GPSAR are
resolved.

Field Robotics, June, 2022 · 2:1028–1067



Under the sand · 1059

0.30 0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10
Depth [m]

175

180

185

190

RM
S 

Am
pl

itu
de

s [
dB

] Target 1
Target 2
Target 3
Target 4
Target 5

(a) Target RMS amplitudes in a 20 cm × 20 cm image patch around the ground truth position with our antenna
positioning solution.
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(b) 3 cm underground with vertically polarized antennas with our positioning solution.
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(c) 13 cm underground with vertically polarized antennas with our positioning solution.

Figure 23. Radar images evaluated at different depths with our localization solution. The shallow targets are
clearly visible verifying the capability to detect landmines. The deep object is also detectable, however the
challenges of deeper subsurface sensing are also highlighted by the attenuation of the radar signal in (c). Additional
clutter shows up in the bottom left-hand corner of the image.

10. Conclusion
In this paper we presented an airborne GPSAR solution capable of detecting buried objects such
as landmines. The complete system consists of a navigation stack to fly user-defined autonomous
survey missions, a time-synchronized sensor suite and high-accuracy online and offline localization
algorithms. Our experiments evaluated the individual contributions of the system components.
We demonstrated the robustness of the terrain tracking controller, the 0.8 µs timing accuracy and
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(a) Target RMS amplitudes in a 20 cm × 20 cm image patch around the ground truth position with the DJI+RTK
antenna positioning.
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(b) 3 cm underground with vertically polarized antennas with the DJI+RTK positioning.
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(c) 13 cm underground with vertically polarized antennas with the DJI+RTK positioning.

Figure 24. Radar images evaluated at different depths with the DJI+RTK antenna positioning solution. The
similarity to Figure 23 confirms that DJI+RTK is a viable solution for GPSAR imaging. Since the images do not
show significant differences, localization does not seem to be the bottleneck of GPSAR anymore. Other radar
processing errors, e.g., millimeter wave soil propagation modelling, seem to outweigh localization errors.

0.1 µs precision of the sensor synchronization, the advantage of dedicated radar trajectory generation,
and the effectiveness of the localization algorithm due to self-calibration, batch optimization and a
dual GNSS receiver setup. Most notably, we demonstrated that this combination of features enables
side-looking GPSAR imaging on a rotary wing MAV, an imaging technique which heavily relies on
an accurate estimation of the sensor trajectory for reconstruction.
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Table 2. List of open-source contributions.
Package Link Description (Section)
mav_findmine github.com/ethz-asl/mav_findmine Main project repository

Platform user interface (5.2)
finite-state machine (5.2)
Radar trajectory

generation (6.1)
DJI tracking controller (6.2)
Altitude estimator (6.3)
Orthomosaic generation

utilities (9.3)
polygon_coverage_planning github.com/ethz-asl/polygon_coverage_planning Optical survey mission

planning (5.2, 9.3)
ethz_piksi_ros github.com/ethz-asl/ethz_piksi_ros ROS driver for RTK GNSS

PPS sync Kernel module (7)
RTK base and survey station

setup (5.2)
mav_gtsam_estimator github.com/ethz-asl/mav_gtsam_estimator GTSAM GNSS and IMU

fusion (8)
versavis github.com/rikba/versavis/tree/feature/gnss_sync VersaVIS firmware with

PPS sync (7)

The system presented in this paper is a valid alternative to GPSAR on large aerial vehicles (Mous-
sally et al., 2004) as well as GPSAR on MAVs with downward-facing radar (García-Fernández et al.,
2020b). The system particularly stands out due to its full, self-contained autonomy. Camera data
collected on an initial flight can be used to generate georeferenced DSMs, which allow users to
safely plan radar flight missions close to the surface, even in regions beyond visual line of sight. The
system enables autonomous radar flights with localization accuracies that allow the generation of
crisp radar images in which buried objects are clearly distinguishable. This is an important step
towards an aerial device that is capable of detecting landmines in the context of humanitarian
demining. In addition, we have open-sourced each of the software components of our system to
encourage reuse and further development by the community, the details are provided in Table 2.
In fact our research partners have been able to utilize the platform to continue improving radar
imaging on MAVs without further assistance. For example, the system enabled InSAR to create
DSMs (Burr et al., 2021), as well as the detection of avalanche victims (Grathwohl et al., 2021) or
tripwires (Schartel et al., 2020b).

11. Outlook
We believe that airborne radar imaging on MAVs is a unique opportunity to reveal hidden objects
in inaccessible places and should be pursued further. Despite the recent progress in the field and
the promising results from the presented system, several open research questions remain.

Navigation
We think that the proportional gain control structure utilized in this work is sufficient to operate
in a multitude of terrains. A simple way to immediately improve flight accuracy and precision is to
replace the DJI pose feedback with our online, sliding window state estimation. A more challenging,
but promising task would be the development of radar survey trajectories in undulating and cluttered
terrain. The path planning would have to avoid collisions while simultaneously sampling the terrain
uniformly. In a first step, the survey surface could be approximated as piecewise linear such that the
presented geometric motion primitives are still applicable. In the long run, the detailed terrain and
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admissible flight space has to be considered to generate informative surveys (Brüggenwirth and Rial,
2019; Zhang et al., 2018). Additionally, it is important to continue developing radar subsampling
strategies to filter informative measurements given the flight path and terrain (García-Fernández
et al., 2020a).

Localization
Both sensor timing and localization quality showed sufficient performance margins for GPSAR
imaging. However, we reached the point where the downstream imaging task did not discriminate
between different localization qualities. In order to continue high-precision state estimation research
a precise outdoor ground truth such as a 6DOF total station would be required (Hexagon, 2021). This
would allow investigating the GNSS error noise model, and IMU vibration damping (Braun, 2016).
Furthermore, quantifiable integration of LiDAR, vision or radar to enable GPSAR imaging in GNSS
denied environments would be possible (Zhang and Singh, 2014; Bähnemann et al., 2019; Kramer
et al., 2020). Additionally, an automatic calibration routine to determine the frequency-dependent
radar antenna phase centers with respect to the IMU could be developed (Doer and Trommer, 2020;
Wise et al., 2021). At the moment, this is still determined from CAD and probably one of the largest
error sources in the localization pipeline.

Airborne GPSAR in Humanitarian Demining
This and the related works show great potential of using MAVs for demining. From a development
viewpoint, it would be important to collaborate with research groups from affected regions in order
to transition the technique into a realistic use case. Knowledge of the target environment, such as
terrain, typical flight obstacles, vegetation, and landmine types, would help focus the development of
the individual components. This includes the navigation and localization, but also the development
of the radar imaging. The radar back projection algorithm still assumes a simplified soil model and
the surface model is limited by the quality of the DSM. Techniques that deal with heterogeneous
environments, clutter, and vegetation still need to be developed. More advanced radar imaging
capabilities will automatically demand even better navigation and localization capabilities.

Nevertheless, the results obtained in this work are already applicable across multiple domains,
especially in cases where automatic data acquisition and/or accurate outdoor localization is required.
Examples include direct photogrammetry, LiDAR mapping, and time-series data acquisition.
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