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Abstract: This paper presents a state-of-the-art light detection and ranging (LiDAR) based
autonomous navigation system for under-canopy agricultural robots. Under-canopy agricultural
navigation has been a challenging problem because global navigation satellite system (GNSS)
and other positioning sensors are prone to loss of accuracy due to attenuation and multi-path
errors caused by crop leaves and stems. Reactive navigation by detecting crop rows using LiDAR
measurements has proved to be an efficient alternative to GNSS. Nevertheless, it presents challenges,
due to occlusion from leaves under the canopy. Our system addresses these issues by fusing inertial
measurement unit (IMU) and LiDAR measurements in a Bayesian framework on low-cost hardware.
In addition, a local goal generator (LGG) is introduced to provide a local reference trajectory to
the onboard controller. Our system is validated extensively in real-world field environments over a
distance of 50.88 km, on multiple robots, in different field conditions, across different locations.
We report leading distance between intervention results for LiDAR+IMU-based under-canopy
navigation, showing that our system is able to safely navigate without interventions for 386.9 m
on average, in fields without significant gaps in the crop rows.

Keywords: sensor fusion, row following, agricultural navigation, agricultural robotics, Kalman
filter

1. Introduction
Robotics and digital agriculture technologies hold great potential in improving the sustainability,
productivity, and access to agriculture (Sparrow and Howard, 2020). Labor remains one of the key
issues facing sustainable intensification. As a result, many research groups around the world have
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focused their efforts on automating various agricultural tasks, such as planting and harvesting,
plant scouting, detection, and treatment of pests and diseases (Neves, 2017; Oliveira et al., 2021;
Shamshiri et al., 2018). The expectation is that intelligent automation may provide ways to mitigate
the impact of major global problems such as climate change, soil depletion, loss of biodiversity, water
scarcity, and population growth (Sparrow and Howard, 2020).

Small agricultural robots, or agbots, could provide new options to farmers who are not enabled
by existing large agricultural machines. While large machines certainly are unmatched in tasks
requiring a lot of power, such as tilling or harvesting, large machines are not ideal for late-season
tasks where they are known to damage the crop. Small autonomous under-canopy robots that may
travel in between the rows of crops could provide new tools to growers of commodity crops such
as corn (Zea mays), soybean (Glycine max), cotton (Gossypium), and vegetables. For example,
small under-canopy robots may enable mechanical weeding (Bakker et al., 2006; McAllister et al.,
2019, 2020; Reiser et al., 2019), cover-crop planting (Cavender-Bares, 2021), and under-canopy
high-throughput phenotyping (Kayacan et al., 2018; Mueller-Sim et al., 2017; Shafiekhani et al.,
2017). This has led to significant interest in autonomous small robots for agriculture which have
become the focus of study for various research groups around the world. There are also several
companies focused on different form factors, including Naio, Ecorobotix, Row-Bot, and EarthSense,
which developed the TerraSentia robot that is used in this study. Shamshiri et al. (2018) and
Fountas et al. (2020) provide a systematic review of various applications of agricultural robots and
list different research and commercial agricultural robotic platforms developed and used in crop field
operations. Such agbots may help farmers to improve yield and productivity while reducing levels
of fertilizer and pesticide as well as water wastage (Sparrow and Howard, 2020). Indeed, topsoil
compaction has been associated with reduced agricultural productivity. In this context, lighter
(weight less than 33 tons) teleoperated or autonomous robots potentially reduce the compaction
issue (Fue et al., 2020; Sparrow and Howard, 2020). Furthermore, due to their lower cost, these
smaller robots could also make agriculture profitable at small as well as large scales, helping improve
agricultural diversity, and productivity in developing nations. This would provide an interesting
departure from growing farm sizes (and machine sizes) (Chen, 2018; King, 2017) towards appropriate
scale mechanization and automation around the world.

However, reliable autonomy remains the key challenge preventing widespread adoption of small
robots. Although there are a significant number of publications about the navigation systems for
agbots using different sensors such as global navigation satellite system (GNSS), light detection and
ranging (LiDAR), or cameras, they are predominantly focused on over-the-canopy robots and larger
machines. Among the limited work that exists in under-canopy navigation, extensive field validation
in diverse real-world conditions has not been performed and no other work has shown an extensive
autonomous navigation as we show in this paper for this type of environment. This paper presents
significant field results demonstrating that sensor fusion with LiDAR and an inertial measurement
unit (IMU) enables reliable under-canopy autonomy. GNSS is often unreliable under plant canopy
and near to the ground due to multi-path and signal attenuation effects. Furthermore, real-time
kinematic (RTK) correction is often observed to be not always available, especially in adverse
weather and in remote locations. Although cameras are commonly used in robot navigation in indoor
environments, they are more sensitive to illumination conditions and also present a shorter range of
view compared to LiDAR (Hiremath et al., 2014b; Reina et al., 2016). Both types of sensor (LiDAR
and cameras) are affected by weather phenomena (e.g., fog and rain) or other environmental factors
(e.g., dust, smoke, and occlusion); the LiDAR is able to provide off-the-shelf distance measurements
with accurate ranging over medium range (up to ∼30–40 m) and fast operation (Reina et al.,
2016).

The key contribution of this paper is the under-canopy navigation system for improving the
LiDAR-based row-following task of autonomous ground robots in corn (Zea mays). To achieve this,
the paper describes the implementation of an extended Kalman filter (EKF) and a local goal genera-
tor (LGG). The first improves the estimation of the lateral distances and the robot heading from the
perception system outputs using the IMU and encoders information, while the second one creates
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feasible paths to smooth the control action behavior. Another contribution is the extensive field test-
ing as a way to validate the proposed system in multiple real-world scenarios. We report 50.88 km of
an autonomous solution for under-canopy navigation in corn crops. Our findings present an average
distance between interventions of 386.9m for fields without gaps [Illinois Autonomous Farm (IAF)
and Earthsense (ES) #2], 56.1 m for production fields, and 47.5 m for fields (ES #1) with gaps (space
of 1 m without plants in both sides of the row). Additionally, we show that the use of EKF improves
the distances, and the robot heading estimated by the perception system helps to increase the
distances between intervention. It went from 51.6 m without EKF [perception LiDAR (PL)] to 400m
with EKF (PL+EKF) in fields without gaps, and from 16.3 m without EKF to 56.1 m with EKF, in
the production fields. Our results also show that the proposed methods lead to significantly improved
autonomy when compared with the earlier single-sensor (only-LiDAR-based) attempts. Indeed, the
combination of the EKF with LGG significantly increases the distance between intervention without
increasing the cost of the overall system. Our previous work (Higuti et al., 2019) demonstrated that
low-cost 2D LiDAR is a viable option for navigation in under-canopy environments. It also utilized
distance between interventions as a key metric to evaluate the reliability of autonomous navigation
in a variety of crop environments. However, the reported results in Higuti et al. (2019) were limited
to 41.4 m. On the other hand, our results are highly promising, as they indicate that low-cost
LiDAR-based navigation is a reliable and effective means of under-canopy navigation.

2. Related Works
Autonomous navigation of agricultural robots has been studied for a long time, especially with
tractors. Shamshiri et al. (2018) and Fountas et al. (2020) provide a systematic review of various
applications of agricultural robots. They also enlist different research and commercial agricultural
robotic platforms developed and used in crop field operations.

Earlier work on autonomous navigation in agriculture was focused on autoguidance of large
agricultural machinery. GNSS-based navigation systems have been widely used to allow automatic
guidance of traditional crop machinery such as harvesters (Pilarski et al., 2002; Stoll and Kutzbach,
2001) and tractors (Abidine et al., 2004; Bell, 2000; Blackmore et al., 2004; Lenain et al., 2003;
Nørremark et al., 2008; Reid et al., 2000; Thuilot et al., 2002; Wang and Noguchi, 2016; Zhang
et al., 2016). In addition, researchers have also investigated the potential of using GNSS-based
navigation systems for small autonomous robots that navigate over the canopy on horticultural
crops such as sugar beet (Bak and Jakobsen, 2004; Bakker et al., 2011). These methods work
reasonably well when there is a direct line of sight to GNSS satellites, but suffer from inaccuracies
due to multi-path errors when the robot is under the canopy. The multi-path error happens
because of thick leaf canopies in crops like corn, soybean, cotton, sugarcane, sorghum, and taller
vegetable crops such as okra. Robotanist, an under-canopy robotic platform developed for sorghum
phenotyping, is an example (Mueller-Sim et al., 2017). It uses GNSS for navigation, and hence
faces challenges when the sorghum plants grow taller than the level of the GNSS antenna. The
authors note that GNSS navigation is a capability that is lost as the season progresses and
sorghum plants become taller than the GNSS antenna. Also, GNSS is not reliable in some countries
in the Southern Hemisphere, because of the South Atlantic Magnetic Anomaly (SAMA) that
affects the GNSS signal (Abdu et al., 2005; Spogli et al., 2013). Additionally, since GNSS is
an extrinsic sensor that only provides the position of the robot, it cannot overcome challenges
such as the presence of static and dynamic obstacles such as rocks and animals in the planned
GNSS waypoint path (Reina et al., 2016; Rovira-Más et al., 2015). This shows that GNSS-based
navigation cannot be a stand-alone solution for autonomous agricultural robots. In particular, GNSS
is not reliable for autonomous navigation in orchards and under-canopy environments (Bergerman
et al., 2015; Mueller-Sim et al., 2017; Santos et al., 2015). Other commercial systems such as
Naio, Row-Bot, etc., seem to also navigate primarily using GNSS. Therefore, work on GNSS free
navigation, such as pursued in this paper, is of broad importance to the agricultural robotics
community.
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Vision-based navigation systems have been extensively studied for the row-following problem
in agricultural fields. The geometric structure of the crop rows as parallel lines in agricultural
fields enables the use of computer vision. As in the case of GNSS systems, earlier works focused
on autoguidance for tractors and heavy machinery such as harvesters (Reid and Searcy, 1987).
Subsequent works also focused on vision-based navigation of over-the-canopy agricultural robots
(Ball et al., 2016; Jiang et al., 2015; Montalvo et al., 2012; Zhai et al., 2016; Zhao and Zhang, 2016).
The camera looks down at the crop rows from a top-down view in these cases and a clear view of
multiple crop rows as vanishing lines is visible in the images. Therefore, the common approach is
the segmentation of vegetation from the soil background, using color indices and line fitting. This is
possible with different approaches such as the Hough transform. From the fitted lines, the relative
orientation and offset of the robot with respect to the crop row is obtained and used to steer the
robot to the middle of the lane between the crop rows (English et al., 2014; Hiremath et al., 2014a;
Radcliffe et al., 2018; Subramanian et al., 2006; Zhang et al., 2018). Also, sensor fusion with GNSS
was used in a lot of these cases to improve the robustness of the system. However, this approach faces
challenges in under-canopy environments such as row crops, because of the presence of significantly
more clutter and occlusion. Xue et al. (2012) developed and tested a vision-based navigation
system for under-canopy navigation in corn crops. Yet, its validation was limited to cases when
the occlusion and clutter are little or insignificant, and the vegetation and soil are distinguishable.
In general, this classical vision-based navigation approach is affected by many factors. Some of
them are continuously dynamic lighting conditions and appearance of crops and soil in the field
throughout the season. VINS-Fusion (Qin et al., 2018) is a popular simultaneous localization
and mapping (SLAM) algorithm for robot navigation that uses visual-inertial sensors to provide
high-accuracy odometry. According to Qin et al. (2018), it is primarily designed for state estimation
and feedback control of autonomous drones. Notwithstanding, it is also capable of providing accurate
localization for augmented reality (AR) applications. While VINS-Fusion is mostly used in indoor
and well-structured outdoor (urban) environments, it is rarely used in agricultural ones.

LiDAR sensors are active sensors that sense geometric information of the environment. They
are commonly used for mobile robot navigation (localization and obstacle detection) in different
applications (Pouliot et al., 2012; Reina et al., 2016; Siegwart et al., 2011). In the context of
agricultural navigation, LiDAR has been widely studied, mostly in orchard environments (Barawid
et al., 2007; Bell et al., 2016; Bergerman et al., 2015; Lemos et al., 2018; Zhang et al., 2013). They
use 2D LiDAR sensors and similar line fitting on images to detect crop rows. Lines are fit on the
2D laser scans to detect the orientation and offset of the robot with respect to the crop rows. Some
work also studied the use of 3D LiDAR sensors to overcome the problem of vegetation occluding tree
trunks. Thereby, it results in noisy 2D LiDAR scans where fitting lines is challenging (Bell et al.,
2016; Zhang et al., 2013). Since commercially available 3D LiDAR sensors are expensive, Zhang
et al. (2013) used a planar LiDAR, and added a rotational degree of freedom to capture 3D point
clouds but this approach adds complexity to the system. A push-broom-based modification to 2D
LiDAR was another approach that was tested to capture 3D point clouds (Baldwin and Newman,
2012). Row crop environments such as corn and sorghum are very different from orchards. Unlike
in orchards, where individual trees are separated by a large distance and also subsequent rows have
a large gap between them, the canopy is dense in row crops and also the row spacing is limited to
around 0.8 m in corn/sorghum. This results in significant occlusion and clutter present in the LiDAR
scans making it challenging to find the crop rows in the scans. Hiremath et al. (2014b) developed
a 2D LiDAR-based navigation system for corn, using a particle filter to handle noise present in the
environment. However, tests were limited to only a very early growth stage of the crops. Troyer
et al. (2016) used a 2D LiDAR to develop a navigation system for corn but they did not validate
their approach in a real field or plants. In late growth stage corn and sorghum, as a robot navigates
under the canopy, the above mentioned challenges of clutter and noise appear in LiDAR scans. This
requires careful analysis of the scans to detect the crop rows as shown by Higuti et al. (2019). While
using sensor fusion with encoders and IMU the robustness of under-canopy navigation is improved,
as shown in our results.
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Figure 1. Navigation system diagram.

3. System Design
The proposed navigation system (Figure 1) is composed by seven steps: Initialize, Update,
Estimate, Validate, Row Follower EKF, Local Goal Generator, and Control. The first
four steps make up the perception subsystem that uses the raw LiDAR measurements from the
surroundings to build two virtual representation of the rows. These virtual walls are used to estimate
the distances (dR and dL) and the robot’s heading (φ). Then, Row Follower EKF gets the linear
(vx) and angular (ωz) velocity estimations from the Hall-effect sensors, as well as the IMU to
correct dR, dL, and φ. Afterwards, the corrected distances are used by the Local Goal Generator
to generate a reference heading (φr). Finally, the Control calculates the control action (ωcz) using
φekf and φr.

3.1. Robotic Platform
The TerraSentia robot system is a compact and autonomous robot designed particularly for
high-throughput phenotyping. It was conceived by Distributed Autonomous Systems Laboratory
(DASLAB) at the University of Illinois at Urbana-Champaign. Since 2017, it has been manufactured
and commercialized by EarthSense. TerraSentia has been designed to be rugged for all-season field
deployment, yet remaining lightweight (16.55 kg with battery) and low cost. The robot dimensions
are 0.54 m × 0.32 m × 0.35 m (length × width × height) and because of this it is able to operate
under the canopy in crops with row spacing as little as 0.4 m. Its body, which was designed to ensure
the system does not harm young plants, is made of hard plastic and reinforced by a lightweight metal
frame.

The robot has four Maytech Brushless Outrunner Hub Motors with Hall-effect sensor to drive
each of its four wheels, which are built through additive manufacturing with polylactic acid. Each
motor is positioned in the middle of the wheel and driven by a custom version of the VESC4 motor
controllers. For navigation, TerraSentia has embedded a Bosch BNO055 IMU and a Zed-F9P GNSS
manufactured by Ublox. These sensors are integrated in a main board manufactured by EarthSense.

Two 2D Hokuyo LiDAR (UST-10LX) scan the environment. The first one is positioned in the
front part and it provides a surrounding’s horizontal scan, which serves as input of the proposed
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(a)
(b)

Figure 2. (a) TerraSentia robot in a corn crop. (b) CAD drawing of the robot.

navigation system. The second one is positioned in the rear part to provide a vertical scan that is
used to make an offline 3D crop reconstruction. Additionally, four wide-angle full HD USB 1080p
camera modules record videos to extract meaningful phenotype features using the automatically
time- and geotagged data from them. This includes plant count, stem width, leaf area index under
the canopy, plant height, and disease detection (Choudhuri and Chowdhary, 2018; Kayacan et al.,
2018).

All sensors are connected to a Raspberry Pi 3, which serves as the main autonomous computer
of the robot for the purpose of this paper. It acquires the readings from the front LiDAR, IMU, and
Hall-effect sensors, runs the proposed navigation system, and generates the desired control signals
(desired robot angular and linear velocities). Then, it transforms the control signals to the desired
velocity for each motor, and sends these values to the VESC4 controllers as pulse width modulation
(PWM) signals to drive the motors. Additionally, the robot has an Intel NUC i7 computer with
500GB SSD and 16GB RAM to store all collected data.

3.2. LiDAR-Based Perception Subsystem (PL)
The core perception subsystem is composed of four stages: Initialize, Update, Estimate, and
Validate. They are thoroughly described by Higuti et al. (2019) with step-by-step and numeric
examples from situations where rows are easily visible, and also when leaf occlusion is predominant.
This section brings an overview to show how LiDAR readings and previous estimates, if available,
are used to estimate current lateral distances and the robot’s heading angle.

In the first stage, the configuration files are parsed and stored as variables in the appropriate
classes, and the robot’s embedded devices are initialized. These configuration files contain the
information about the physical characteristics of the robot, threshold values, function limits, main
crop characteristics, and other initial conditions. During the Update stage, the LiDAR readings,
the robot’s current orientation angle φ, and the previous estimates, if available, are obtained and
sent to the Estimate stage. Also, the update stage receives the constants set from the Initialize
stage during the first loop. All these variables are used in the Estimate stage to filter out extraneous
information and create a data set to determine the new values for dR, dL, and φ.

In the first step (ProcessLiDARInput) of the Estimate stage, the raw LiDAR readings are
projected from polar to Cartesian coordinates, in the robot local frame ({R} in Figure 3). Then,
they are transformed from the local to the path frame ({P} in Figure 3) using the robot’s heading
(φ) to compensate the robot’s orientation deviations. {P} is a translation of the global coordinate
frame {G}, which is located at a corner of the corn crop, to the origin of {R}. {P} and {R} have
their origins in the geometric center of LiDAR. The first has its x axis (XP ) always parallel to one
of the rows, and the latter rotates with the robot. Also φ is considered as the angular difference
from XP to XR.

Figure 4 brings examples of the LiDAR scan’s projections. Figure 4a shows a LiDAR scan, when
the robot is around an ideal scenario, where the rows are parallel, and there is absence of hanging
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Figure 3. Global (G), path (P), and robot (R) reference frames. The origins of P and R are fixed at LiDAR
geometric center. Robot y axis (XR) is aligned with robot’s longitudinal axis; path y axis (XP) is parallel to rows.
φ is the angle between these two x axes. dR and dL are the orthogonal distances between the center of the sensor
and each adjacent row.

(a) (b) (c) (d)

Figure 4. LiDAR scans from experiments in corn fields. (a) Well-behaved case with both rows clearly distin-
guishable and parallel. (b) Sensor occlusion caused by hanging leaves. (c) Portion of right row hidden by leaves.
(d) Sparseness combined with fallen leaves causing a difficult environment to understand.

leaves, fallen stalks, or gaps. These situations may generate total occlusion of the sensor (Figure 4b)
or hide portions of the rows (see top part of right row in Figure 4c). Finally, Figure 4d shows a
scenario where the combination of sparse stalks with fallen leaves makes it challenging to determine
the crop rows in the LiDAR scan.

As a single LiDAR scan has 1081 distances on a plane with 270◦ angular range, there are some
readings without any relation with the rows. For that reason, the readings inside of a fixed rectangle
(y ∈ (−Dy, Dy), x ∈ (Dx0, Dx1)) around the origin of the frames {R} and {P} are used in the next
steps. Lx is defined to consider the points related to neighboring rows while the points of the farther
rows are discarded. Dx0 was defined as 0.1 m in order to discard the points behind the YP and
Dx1 was 1.9 m. Opposed to previous work, the distance readings behind LiDAR are not considered
anymore because the leaves located in the rear part of the robot usually form a dense curved shape
which makes multiple starting points for straight lines generate wrong estimations of the distances
and the robot’s heading. We observed that this problem is more common when the robot is used to
navigate in denser crops. Once the LiDAR readings are filtered, they are split into two sets: right
and left sides. The use of φ to rotate the raw readings helps to guarantee that one of the captured
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rows is almost parallel to the XP axis. This condition allows the use of a histogram to detect where
the relevant information about the position of each row is. The histogram generates two peaks (one
for the right side and the other one for the left side) and all the readings around these peaks are
considered to obtain the virtual walls in the ObtainLine step.

In the ObtainLine step, the least minimum squares linear regression is used to obtain the virtual
lines. Also the orthogonal distance to such segments provides the values of dR and dL. Some
properties (such as length, standard deviation, difference between current orthogonal distance/slope
with previous ones) of the virtual lines are used to determine the quality of the estimation, and they
are used by a heuristic to define if the distances are valid or not. If they are valid then their values
are sent to the Row Follower EKF. If they are not valid, then their last valid value is used in the
EKF. The validation process happens in the Validate stage.

3.3. Extended Kalman Filter (EKF) for Perception
To improve performance of lateral distances and heading estimations, this study takes advantage of
the complementary characteristics of the perception algorithm that estimates the absolute position
of the robot in relation to the crop row. The robot’s embedded sensors estimate the robot’s relaive
displacement at every time instant. Thus, an EKF was chosen to provide a better estimation of the
true values, given the fusion between available sensors.

To provide a reference frame for the mechanization equations that represent the movement of the
robot in relation to the rows, a new coordinate frame is defined. This new coordinate frame {N}
assumes two straight rows in the form of an aisle with constant distance between the rows, as shown
in Figure 3. The inertial coordinate frame {N} is defined with origin localized in the entrance of the
corridor. The x axis of coordinate frame {N} shows the longitudinal distance along the path. The y
axis indicates the perpendicular distance across this same path and indicates the robot’s cross-track
error along the path. For reference purposes, the z axis points upwards.

A differential system of equations may be written to represent the movement of the robot along
this path, as shown in Equation (1). p is the three-dimensional position of the robot in relation to
the origin of {N}, C{N}{R} is the rotation that aligns the frame {R} to the frame {P}, and v is the
three-dimensional robot’s velocity written in terms of the local frame {R}:

ṗ = C
{N}
{R} v. (1)

We assume displacements along the inertial z axis, and rotations around x and y axes are
negligible. Thus, a planar version with only the x and y axes is used. Equation (2) shows the
rotation matrix that transforms from the local robot’s body frame to the {N} inertial frame using
this planar assumption:

C
{N}
{R} =

[
cosφ − sinφ
sin φ cos φ

]
. (2)

And then[
ṗx

ṗy

]
=
[
vx cos φ− vy sin φ
vx sin φ+ vy cos φ

]
. (3)

py is a metric of cross-track error, and for this specific problem, we define cross-track error as
0.5(dR − dL). Also, the sum dR + dL is assumed constant and it is equal to the crop lane width
LW . Since the lateral distances dR and dL are the values of interest in this project, the differential
equation may be rearranged to highlight these metrics, as shown in Equation (4): ṗx

ḋL
˙dR

 =

 vx cos φ− vy sin φ
−vx sin φ− vy cos φ
vx sin φ+ vy cos φ

. (4)
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Further extension of state estimation is given by adding the estimation of the angle φ, where
φ̇ = ω. Since displacement on the robot’s longitudinal axis, i.e., the x axis, is not a state that will
contribute to the task of row following, it is no longer used in the formulation, to reduce calculation
complexity. In addition, because a nonholonomic model formulation is adopted to represent the
robot’s kinematics, the lateral velocity vy is also disregarded. The control variables vx and ω are
chosen as inputs of our differential system, such that u = [vx, ω]T :ḋL

˙dR

φ̇

 =

−vx sin φ
vx sin φ

ω

. (5)

Using the differential system stated in Equation (5) and solving it numerically using the forward
Euler method, a solution model is presented, where x̂k = f(xk−1, uk−1). The input uk is provided
by embedded sensor measurements, which we define as uk = (vx, ω). Because the model is updated
using noisy sensor measurements, and these measurements are susceptible to uncertainties, then
we assume a process uncertainty term ∆k added to the prediction model. The resultant equation
is x̂k = f(xk−1, uk−1) + ∆k, and the uncertainty is assumed as a zero mean Gaussian noise. This
solution model is used to predict future robot positions according to the specified coordinate system
{N}:

x̂k = f(xk−1, uk) + ωk,
zk = h(xk) + νk.

(6)

To correct state prediction from the obtained mechanization model, an extended Kalman filter
framework was chosen. It accounts for the uncertainties in distance and heading estimation (Thrun,
2002). We model the process with Equation (6) where estimated state x̂k is a function f(·) of past
state xk−1 and control inputs uk, as shown in Equation (7). dt is the time step used in the forward
Euler method and represents the time taken to run one EKF iteration:

f(xk−1, uk) =

 ˆdLk

ˆdRk

φ̂k

 =

dLk−1 − vx sinφk−1dt
dRk−1 + vx sinφk−1dt

φk−1 + ωdt

 . (7)

To calculate the predicted covariance estimate, the Jacobian of function f(·) evaluated at each
time step is used. The Jacobian matrix is shown in Equation (8). The function h(·) relates the state
xk to the measurement zk, and they are directly obtained from the LiDAR-based perception model
as shown in Equation (9). The Jacobian function h(xk) to calculate the updated covariance estimate
is the identity matrix. In our implementation, we assume the process and measurement covariance
matrices are constant. Therefore, Qk = Q and Rk = R.

Fk =

1 0 −vx cosφkdt
0 1 vx cosφkdt
0 0 1

 , (8)

h(xk) =

dLk

dRk

φk

 . (9)

In the prediction step, f(·) (Equation (7)) estimates the state using the linear velocity vx and
angular velocity ωz, respectively, from wheel encoder measurements, and an embedded gyroscope
sensor. Subsequently, in the Update step, the innovation occurs by taking into account the
calculated values of lateral distances and the robot’s heading that are obtained from the LiDAR
point cloud (either raw 2D or processed 3D). The IMU sensor used in our experiments contains an
autocalibration algorithm that runs in the background and removes the accelerometer and gyroscope
measurement bias (Sensortec, 2020). Therefore, an additional bias estimation is not necessary and
is not present in our EKF formulation.
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(a) (b)

Figure 5. (a) Desired trajectory given by Equation (10). (b) Desired behavior of φr .

3.4. Local Goal Generator (LGG) for Row Follower and Controller
The local goal generator is a function that simulates a vector field where the value only varies in x.
The behavior of the field is designed to point the robot towards the middle of the lane, and gradually
turns the robot to the normal orientation as it approaches the middle. This reduces the oscillatory
behavior that arises when the control action is only based on the position, which commonly leads
to oversteering. The vector field (Equation (11)) was defined as the arctangent of the derivative of
Equation (10). It is used to establish the trajectory that the robot should follow, when it is in a
row:

f(x) =
(

b∣∣ ed

e

∣∣
)c

, (10)

φr = arctan
(
df(x)
dx

)
= − arctan

c(ed

e2

)
bc

(
1∣∣ ed

e

∣∣
)c+2

, (11)

where e is the curve width constant, a is the curve smoothness constant, c is the curve deadband
constant, dref is the reference distance, and ed is the error distance which is defined as ed =
dref − 0.5(dR ekf −dL ekf ). dref is zero because it is expected that the robot travels following the
lane in order to minimize possible collisions with lateral rows. Figure 5a shows the trajectory given
by Equation (10) and Figure 5b shows the desired behavior of φr.

The output of the local goal generator is the target heading (φr). The next step of the navigation
system is a proportional, integral and derivative (PID) controller used to keep the robot in the path
center. Its outputs are φr and φekf and its output is an angular velocity (ωC

z ) command which is
sent, together with the linear speed (V C

x ) command, to the motors.

4. Success Metric
A successful autonomous run of mobile robots is often subjected to assessment of how well it followed
the desired path. Higuti et al. (2019) discusses two derived values from perception subsystem lateral
distance outputs: cross-track error (CTE) and lane width. The first is the distance between the robot
and the reference path, i.e., the middle of the lanes. It is given by half of the difference between
right and left lateral distances, CTE = 0.5(dR − dL). The second is the measured navigable space
and it may be compared to nominal row spacing, when seeds were planted. It is given by the sum
of lateral distances Lw = dR + dL.

Such values highlight the need for ground truth which will either give the robot’s exact positioning
over time to compare with cross-track error or provide what the lane width should be. Nevertheless,
determination of ground truth in crop environments faces a variety of challenges. Commonly used
for outdoor applications, RTK-GNSS suffers from signal degradation due to loss of satellite view and
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multi-path errors under canopy. A stick to raise the GNSS antenna above coverage is not feasible
since plants are more than 2 m tall, and such a stick would get entangled and heavily oscillate due
to ground unevenness. Markers placed on the ground would require constant maintenance because
the robot would go over it, which also raises a ground condition change. Since LiDAR itself provides
raw distance measurements, a manual ground truth may be obtained from them and the results
may be directly compared. For such a task, 1 of every 10 scans is analyzed, and the visually best
fitting line is annotated for each side, if available.

Since RTK-GNSS is often used for ground truth, to show how manual ground truth compares
to that, the upper part of five rows on a late stage corn crop was cut down from nominal 2.4 m to
1.4 m (Figure 7e) to reduce the environmental influence on GNSS signal. To be easily comparable
to perception’s cross-track error, the GNSS readings are converted to Cartesian coordinates using
the Haversine formula, where changes in x axis refer to longitude displacements with fixed latitude,
whereas y-axis values refer to latitude displacements with fixed longitude. A subsequent reference
transformation brings position on the lane start to the origin, and flattens the following positions
inside a straight lane to the x axis. Finally, the CTE is matched on a timestamp basis and plotted
as y displacements against the flattened x values.

Given that the sensor operates on a 40 Hz scan rate, manual ground truth is hardly scalable as field
experiments increase in quantity and duration. Since the robot is still in a phase where it is followed
by an operator, the current autonomous mode is expected to relieve people from the tedious task of
driving the robot while going through crop lanes. Therefore, the success metric adopted in this work
is the distance per intervention, that is, how much crop was covered between interventions, which
is defined as situations where failures in perception or control subsystems required the operator to
recover manual control of the robot. It also counts situations where system fails soon after starting
(bad start) and failures due to presence of gap, an important feature in research fields.

5. Experimental Results
Field experiments were carried out aiming to evaluate the perception and control subsystems on corn
crops. They may be divided into two categories, as follows: (1) controlled tests and (2) uncontrolled
tests.

The controlled tests were designed to show the improvement obtained, with the use of EKF (for
perception) and the local goal generator, in relation to our previous navigation system (Higuti et al.,
2019). Additionally, these tests were used to pinpoint the failure sources when the TerraSentia is used
in different field situations (rows with a curve, border rows, and uneven terrains). This is opposed to
previous study, where corn experiments were restricted to well behaved lanes, and sorghum experi-
ments varied from well behaved to intensely cluttered, but they were limited to 3 m of lane length.

The uncontrolled tests used only the proposed system (referred to as PL+EKF+LGG). They
have been performed by third parties with no specific knowledge about the perception and control
subsystems. For such cases, the autonomous navigation is an auxiliary tool for another research
(mainly a collection of visual data along rows) in states in the USA (Illinois and Missouri). These
tests exposed the robot to diverse field conditions, and also different user cases as going through the
lane from beginning to end could not be the main goal, but rather running a few meters to capture
a specific part of the crop for offline analysis.

5.1. Experimental Setup
For the validation tests (controlled and uncontrolled tests) presented in this paper, the core
perception subsystem ran with the same configurations as the one presented in Higuti et al. (2019)
except for nominal lane width, which was set to 0.75 m since all fields share this characteristic within
a 0.10 m interval, and desired forward speed, which was raised from 0.22 to 0.7 m/s.

The EKF model and measurement error covariance matrices, Qk and Rk, respectively, were
set as constant diagonal matrices whose values were determined from the expected error of the
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(a) (b)

Figure 6. (a) UIUC Illinois Autonomous Farm (IAF) research field. (b) Production field farm with curve. The
red lines indicate the rows used for the controlled tests.

sensors (LiDAR, encoders and IMU). Qk was set to diag ( 0.001 0.001 0.01 0.01 ) while Rk was set to
diag ( 0.05 0.05 0.5 0.5 ). The parameters of the local goal generator were empirically determined using
Equation (11). We chose initial values for b, c, and e to generate the plot of different trajectories, then
we chose the one with the softest shape to test it in the field. Finally, we fine-tuned the parameters
during field tests and their final values are b = 3.8, c = 0.55, and e = 0.7.

We tuned the proportional and derivative (PD) coefficients by hand in the field. We initialized
Kp and Kd to zero. We started with Kp, reducing overshoot. We then adjusted Kd until the system
was no longer underdamped. The integral gain Ki is not used because there is no observable steady
error in the system behavior. Our final coefficients were Kp = 0.7 and Kd = 1.5.

To allow usage of the monocular camera version of the off-the-shelf ROS package1 VINS-Fusion
(Qin et al., 2018), further referred to as VINS-mono, the robot’s front camera and IMU readings
were suitably collected in rosbag format for a manual run in lane G. Additionally, the extrinsic
and intrinsic parameters of the robot’s front camera were found and updated in the configuration
files. Finally, VINS-mono offline uses such data to produce odometry estimations, which may be
compared to CTE inside a corn crop.

5.2. Controlled Tests
The controlled tests were performed in two fields (Figure 6): (1) the UIUC Illinois Autonomous Farm
research field (further referred to as IAF) and (2) a production field farm with a curve. Both fields
are located in Urbana-Champaign, Illinois, USA, and their main characteristics are (1) nominal row
spacing equal to 0.75 m, (2) plant spacing around 0.1 m, except for lanes with random sparseness
or artificially induced gaps, and (3) growth stage R4–R5.

5.2.1. Controlled Tests in IAF
Six situations in IAF were used to evaluate the introduction of EKF and LGG modules into the
system. The first scenario (lane A) is the best case where both rows exist from the beginning to
the end of the lane, and they are straight and mostly parallel (Figure 7a). The second (lane B) is
similar to the first one. However, it has 12 gaps from 0.5 m to 1 m and 1 gap of 2 m (Figure 7b). The
lengths of both rows were 220 m. The third scenario used the same lanes and the LiDAR readings
were acquired with different update rates of 10 and 5 Hz. The fourth and fifth were 125-m-length
rows characterized by sparseness and fallen stalks (Figure 7c) or the presence of high grass and
weeds (Figure 7d). Finally, the sixth scenario (lanes G and H) had 90-m-length rows, where the
plant tops were cut (lowering height from 2.4 to 1.4 m) to get better RTK corrections along their
length (Figure 7e). Additionally, lane G had artificial bumps (Figure 7f) in its first 30 m to check

1 https://github.com/HKUST-Aerial-Robotics/VINS-Fusion
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Table 1. Number of interventions on lanes A (straight with gaps)
and B (straight and continuous) in IAF.

Run (Lane)

1(A) 2(B) 3(A) 4(B)
PL+EKF+LGG 1 1 1 2
PL+LGG 1 5 2 4

(a) (b)

(c) (d)

(e) (f)

Figure 7. Scenarios used for the controlled tests in the Autonomous Farm. (a) Lane with continuous rows
(without gaps) on both sides. (b) Lane with rows where there are small gaps (less than 1m) and one big gap
(around 2m) located close to the end. (c) Internal border lane with missing plants (only on one side) and fallen
stalks inside it. (d) External border lane (without gaps) with grass, weeds, and clutter. (e) Upper part of five
rows was cut down to improve RTK GNSS accuracy. (f) TerraSentia with front wheels (left side) in one of the
artificial holes in the uneven lane.

the system behavior when the robot is running in this kind of terrain. While all lanes A–H provided
field data to compare the estimation performance for the full system (PL+EKF+LGG) against the
system without EKF (PL+LGG), tests with respect to LGG were carried out on lanes G and H.

Lane A provides a baseline as it is the less externally influenced. Table 1 shows that five
interventions happened in runs 1 and 3. Except for the second one for perception LiDAR without
EKF (PL+LGG), all of them were end-of-lane interventions, i.e., tyhe robot got to the end of the
lane, and required manual operation to go to the next lane. That intervention followed a collision
after the heading estimation diverged due to most of both sides being occluded by leaves in the
middle of the path.
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Figure 8. A major intervention cause is the existence of gaps, i.e., no crop row in any of the sides for more than
0.5 m. Plot depicts how heading changed 2 m before and after gap, which is represented by the gray dashed box.
For lane 2(B) with PL+EKF+LGG, blue circles show the estimate from perception system (dark) and measured
with IMU (light). Similarly, red markers depict the estimate and the magenta ones are the IMU readings for lane
2(B) with PL+LGG. The inclusion of EKF to the system has made a clear impact on heading estimation with
more continuous and less erroneous (compared to IMU reading) estimates as we contrast the dark blue with red
circles.

All not end-of-lane interventions (8 of 12 for B) happened while crossing or soon after the robot
crossed the gap. This happened because of heading estimation error. In this case, as the robot
approached a gap, there were fewer readings from the rows and they probably were not from the
stems. These two factors combined destabilize the heading estimation near the gap. To illustrate
this, Figure 8 shows heading estimates from the perception subsystem (blue and red dots) and
yaw measurements from the IMU (light blue and magenta lines) for the same gap in both 1(B)
experiments.

The gray dashed box indicates the gap position as the robot moved along the lane. It may be
noted that estimates worsen as the robot approaches the gaps. Because of such a bad heading,
even though rows may be visible after the gap, they are split into wrong sets and the robot may
be following badly fitted lines. Indeed, the estimates greatly differed from expected inside the gap
window. Notwithstanding, they recovered as the robot approached the rows (right side of the dashed
box in Figure 8). Depending on how the robot is misaligned when it is close to leaving the rows
before gap, it may run diagonally, and may hit one of the rows, enter the neighbor lane, or recover
to the correct lane. This last option, when the robot is already going away, is usually accompanied
by a strong control action that causes an oscillatory driving and the robot may crash soon after
it enters the lane. Finally, Figure 8 also exposes the difference between the perception subsystem
with (blue) and without EKF (red). The estimates with EKF do not disperse and resemble the IMU
readings. Even though differences are bigger around gaps, they are not as drastic as without EKF.
Moreover, they allowed the robot to cross all minor gaps. The only collision occurred in the 2-m
gap, when the robot lost track of the lane it was going to and went away.

Table 2 shows the number of intervention runs with variable LiDAR update rate. Since the
nominal update rate is 40 Hz, the results obtained in Table 2 for this frequency are similar to the
ones shown in Table 1. The PL+EKF+LGG system had two interventions only in lane B when the
robot tried to pass through the big gap (bigger than 2 m) while PL+LGG had problems in both
lanes (two interventions for lane A and five for lane B). Also, it may be noted that the number of
interventions does not change when EKF is used. In lane B, both 5 Hz and 10 Hz presented three
more interventions, all collisions, than 40 Hz. Besides the gap problem, less updated measurements
compromised stabilization after occlusions. This happens because the robot blindly drives forward
while a scan without occlusion is yet to be processed by the perception subsystem. Indeed, since
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Table 2. Number of interventions in runs that simulate different LiDAR
frequencies. The tests occurred on the same A and B lanes.

Run (Lane)

40 Hz 10 Hz 5 Hz

1(A) 2(B) 1(A) 2(B) 1(A) 2(B)
PL+EKF+LGG 1 2 1 2 1 2
PL+LGG 2 5 2 8 1 8

Table 3. Number of interventions in the sparse rows with frequent hanging leaves or
fallen stalks (C and D) and cluttered with high grass and weeds (E and F) lanes in IAF.

Run (Lane)

1(C) 2(D) 3(C) 4(D) 5(E) 6(F) 7(E) 8(F)
PL+EKF+LGG 2 1 1 2 1 3 1 2
PL+LGG 6 9 4 3 4 5 4 6
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Figure 9. The cross-track error comparison between PL+EKF+LGG with 5-Hz (blue) and 40-Hz (red) LiDAR
scan rate. Note that with 5 Hz, the system is more prone to larger swings (around 60 and 160 s), and also to
oscillatory behavior (around 220 s). Nevertheless, when also using EKF coupled to PL, the number of interventions
did not rise.

calculation of the control action requires updated estimates, while these are not available, the control
remains the same. For such reason coupled to the fact that the robot is traveling at 0.7 m/s, the
robot may overshoot the reference—the middle of the lane. This oscillating behavior is clear on
Figure 9 between 200 and 300 s.

Twenty-eight interventions happened in the sparse rows (C and D in Table 3) with 8 end-of-lane,
2 operator stops, 1 bad start, and 1 hardware issue. From the remaining 16, all collisions because
of a perception failure, the most significant error sources are heading estimation (8) and converging
aspect of the perceived rows (3) because of hanging leaves and fallen stalks occluding the actual rows.
Similar to the issue in the gaps (see Figure 8), the sparseness in the rows randomly diminished the
available readings from the actual row, which raises the possibility of readings from fallen stalks and
hanging leaves to be considered as an extension of the rows. While PL+LGG tests concentrated 14
of these perception-related collisions, PL+EKF+LGG had only 2 (both heading estimation failures).
The cluttered lanes had 26 interventions (E and F in Table 3). They had 8 end-of-lane, 4 bad starts,
and 1 hardware issue. The other 13 ended in collision due to a perception error, and again, the most
significant source is heading estimation (8), now due to row occlusion because of the presence of
high grass and weeds within the lane. Similarly, most of the perception-related collisions happened
on the PL+LGG experiments (10 against 3 in PL+EKF+LGG).

As the final part of the controlled tests, three sets of experiments were carried out to show the
effect of the EKF and LGG on the system when the robot is running on uneven (first 30 m of lane
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Table 4. Number of interventions for runs in lanes G and H in IAF. Lane G has initial 30 m with artificial bumps.
Both lanes had a significant part of their coverage cut to improve GNSS measurements. That also reduced the
presence of fallen leaves, leading to mostly clear lanes as it may be seen in Figure 7f.

Run (Lane)

1(G) 2(H) 3(G) 4(H) 5(G) 6(H) 7(G) 8(H) 9(G) 10(H)
PL+EKF+LGG 1 1 1 1 1 1 1 1 1 1
PL+LGG 1 1 1 2 2 1 1 1 1 1
PL+EKF (Kp = 0.7,Kd = 1.5) 1 3 2 2 4 3 2 5 2 2
PL+EKF (Kp = 0.35,Kd = 0.7) 9 8 8 2 31 - - - - -
PL+EKF (Kp = 1.7,Kd = 1.7) 2 2 1 1 5 1 1 1 1 1

G) and flat terrains (lane H). The first set of tests consisted of 10 runs using the proposed system
PL+EKF+LGG. For the second one, we made another 10 runs using the system without EKF
(PL+LGG). Finally, 22 runs were performed with the system without LGG (PL+EKF). Table 4
summarizes the results from those tests.

On lanes G and H, only one intervention per run occurred with the proposed system
(PL+EKF+LGG). This intervention was related to the end row, where the user needs to regain
control and manually drive the robot to the next lane. Apart from the end row interventions, the
system without EKF (PL+LGG) got two additional interventions. Both interventions were related
to sensor (LiDAR) occlusion. Based on those initial results, we may say that the system with and
without EKF did not have any problem with the uneven terrains. Nevertheless, the system without
EKF was more sensitive to the occlusion.

Unlike EKF, a module that produces the same outputs as PL, LGG suitably converts its input
CTE into a target heading (φr), which is further used as reference of the controller’s input. Therefore,
when LGG is absent, there are two options without changing the subsequent controller block: (a)
set the target heading to zero since this value is no longer calculated, and the controller turns into
a simple null heading controller, or (b) use CTE, the other PL or PL+EKF output, as input for
the PID controller. Option (a) is not suitable for the under-canopy navigation because only keeping
the orientation does not guarantee that the robot will not collide into lateral rows. For such reason,
option (b) is chosen to keep the controller when LGG is absent. As the magnitude of CTE is similar
to the heading error (from −0.4 to 0.4), the gains of the original PID (Kp = 0.7 and Kd = 1.5) were
used as initial values. The obtained results of this configuration were summarized in the third row
of Table 4. Subsequently, five runs (fourth row of Table 4) were executed with PID gains reduced to
half of the original values (Kp = 0.35 and Kd = 0.75). It was not possible to test more times with
these values because the frequent robot collisions caused some damage to the plants, which is highly
undesirable. Finally, the best behavior of the system without LGG was obtained with Kp = 1.7
and Kd = 1.7. Ten runs were made with such values and the results are shown in the fifth row of
Table 4. The best run of each system (PL+EKF+LGG, PL+LGG, PL+EKF (Kp = 0.7,Kd = 1.5),
PL+EKF (Kp = 0.35,Kd = 0.75), and PL+EKF (Kp = 1.7,Kd = 1.7)) was selected to plot the
CTE behavior for each selected test in Figure 10.

According to the results shown in Table 4, the worst behavior of the system was obtained when
LGG (PL+EKF) is not used and the PID gains were Kp = 0.35 and Kd = 0.75 (58 interventions
in 5 runs). With this configuration, the robot heavily oscillated. Sometimes it could not return to
the path center (red line in Figure 10). Additionally, it always crashed in the uneven part of lane G.
Twenty-six interventions (10 of them were end row interventions and the other ones were related to
sensor occlusion, uneven terrain, and the oscillatory behavior) happened with the system without
LGG (PL+EKF) and the same values of PID gains as the original ones (Kp = 0.7,Kd = 1.5). With
this configuration, the robot kept the path center with a small oscillation (brown line in Figure 10).
Still, an overshoot appeared when the robot ran close to one row, generating a constant oscillatory
behavior or a crash. The best behavior of the tests made without LGG was obtained with the
PID gains Kp = 1.7 and Kd = 1.7. With this configuration the robot was able to keep the path
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Figure 10. CTE for the best test of PL+EKF (Kp = 0.35, Kd = 0.75) (red line), PL+EKF (Kp = 0.7, Kd = 1.5)
(brown line), PL+EKF (Kp = 1.7, Kd = 1.7) (orange line), PL+LGG (blue line), and PL+EKF+LGG (green line).
An oscillatory behavior is seen on all experiments without LGG. The oscillations are minimized for Kp = 1.7,
Kd = 1.7 gains. When using LGG in continuous straight lanes, such as G or H, performance is similar. However,
it may be noted that estimates without EKF (blue) are noisy when compared to PL+EKF+LGG (green).
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Figure 11. Representation of lane H when system ran PL+EKF with the best PID gains (Kp = 1.7,Kd = 1.7).
Although controller led to an oscillatory behavior, PL correctly estimated the robot’s position (pink line), which
shows great agreement with RTK-GNSS positioning (green dots). The blue and brown lines represent the position
of each row.

center with a small oscillation and the overshoot was deleted (orange line of Figure 10). Fifteen
interventions were obtained with this configuration where 10 of them were end row interventions
and the other 5 were related to the sensor occlusion. Although this configuration was the best one
when LGG was not used, the proposed system (PL+EKF+LGG) had a better behavior (green line
in Figure 10) with less number of interventions. Also, the system without EKF (PL+LGG) was
better (see blue line in Figure 10) than PL+EKF (Kp = 1.7,Kd = 1.7). Yet, it had more noise
than PL+EKF+LGG. Figure 11 shows a comparison between CTE (pink line) and GNSS+RTK
(green line) for a run made with PL+EKF (Kp = 1.7,Kd = 1.7) where the information given by
GNSS+RTK shows the same oscillatory behavior of CTE.
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Figure 12. Since lanes G and H had significantly better GNSS measurements (98% below 0.05-m accuracy),
they were used to compare the distance until intervention for different configurations of the navigation system.
Without LGG and with poorly tuned PID (red and brown colors), most segments do not exceed 20m before
intervention. The system without LGG and best PID gains (yellow) has similar performance to PL+LGG, i.e., the
system without EKF (blue). The full system PL+LGG+EKF (green) traversed all 10 runs without intervention.

(a) (b) (c)

Figure 13. Average condition in the production field corn crop (a) and an example of fallen stalks and hanging
dry leaves (b) and its associated LiDAR scan (c). It may be seen that after 0.5m, the right row is completely not
visible. For the left side, the dry leaves form an additional cluster of readings from 0.5 to 2m, which also covers
the stalks.

Finally, Figure 12 shows the distances that the robot was able to run before each intervention
presented in Table 4. The longest distances traveled by the robot happened when the proposed
system (PL+EKF+LGG) was used (around 90 m) because it only has end row interventions. The
shortest distances come from the tests using the system without LGG (PL+EKF) with the lowest
PID gains (Kp = 0.35 and Kd = 0.75) because it had a big number of interventions. In this case
the maximal distance run by the robot was 20 m. When the EKF (PL+LGG) was not used, the
maximal distance was 90 m and the minimal one was 20 m.

5.2.2. Controlled Tests in the Production Field Farm with Curve
An additional six runs were performed in a production field corn crop containing a curved section
with minimum curvature radius of 8m (Figure 13a). The length of the lanes was around 300 m.
Besides the curve, which assesses how well perception performs when rows are not parallel, this
field has been left untouched for the season. Therefore, it possesses all challenges at once: angled
stalks (lodging), a high number of dry leaves, fallen plants, and ground clutter. The angled stalks
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increased the possible lane width because the stalks grew outward. The dry leaves cause a variety of
changes to the LiDAR scan. They may simply block the LiDAR field of view, form an inner “row”,
form a block on one side that does not allow seeing through, or form a converging pattern, among
other unseen cases. The fallen plants may be insurmountable obstacles, cover the row, or provide
extra clutter. The ground clutter makes the robot unstable, bouncing in all directions.

Seventy-two interventions occurred in the six tests, from which 10 will not be considered in
this analysis because 2 are hardware issues, 2 are operator manual stop, and 6 are end-of-lane
interventions. For the remaining 62 interventions, 5 were bad starts and 46 happened with PL+LGG
and 11 with PL+EKF+LGG. For PL+LGG, the most significant error sources were convergence
of rows (23), classification of valid side (7), and heading estimation (7). The 11 collisions for
PL+EKF+LGG occurred because of convergence of rows (4), classification of valid side (3), control
not responding to distance error (2), challenging row identification in the LiDAR data (1), and
wrong distance estimation (1).

Figures 13b and 13c highlight the issue of having a single scanning plane. There is a horizontal
leaf that blocks all readings on the right side behind it. Moreover, a converging pattern of the rows
for y ∈ (0, 0.5) may be noted. Because our algorithm assumes that the angle of the best defined line
is the heading error, when the scan was rotated to make the right row parallel to the y axis, the left
row became highly tilted to the right. This compromised the point-choosing step, which relies on a
histogram applied to the x axis to find the 0.05-m bin with the most readings. Since the right row is
already parallel to the y axis, most of its readings were counted in the same bin. Still, the same does
not happen with a diagonal row, such as the left one, whose readings were scattered on several bins.
Subsequently, only the readings within the highest count bin and its neighbors are used. Therefore,
the derived expression of the left row contains only a small section of it.

5.2.3. Remarks about Ground Truth
One of the most challenging tasks of the data analysis is to check the accuracy of the estimated
distances due to the lack of a reliable source of ground truth for under-canopy navigation. GNSS
measurements are the most popular data used as ground truth in robotics. Notwithstanding, they
present inaccuracies in under-canopy scenarios. One example of the low accuracy of the GNSS in
under-canopy scenarios is shown in Figure 14, where the brown and blue dots show, respectively,
the left and right lateral rows while the magenta line depicts the CTE. The scattered points with
the colormap represent the GNSS measurements. Although cross-track error and experimental notes
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Figure 14. Representation of lane A, where straight and mostly parallel rows exist from beginning to end. CTE
(pink) shows the robot’s estimated position when autonomously driving with PL+EKF+LGG. Although the robot
kept itself in the middle of the lane for the whole trajectory, note that GNSS positioning (scattered dots) does
not exhibit such a path. Indeed, GNSS accuracy had an average of 2.09 m with a minimum of 1.72m. This is
expected when canopy and multiple rows surround the robot. The vertical gray line represents the end-of-lane
intervention.
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Figure 15. CTE (pink line) and RTK-GNSS (scattered dots with colormap) of a run made with PL+EKF+LGG
in lane G. The blue and brown lines represent the position of each row. Although GNSS accuracy is below 0.05 m
for most of the time, accuracy went up to 0.62 m, between 52 and 59 m, before dropping back to the average
0.02 m. For such a period, GNSS positioning was compromised.

indicate that the robot stayed within rows and around the center of the lane, the same cannot be
observed from the positioning given by GNSS. In this experiment, GNSS accuracy had an average
of 2.09 m and a minimum of 1.72 m.

Such GNSS issues prevented a comparison between GNSS measurements and CTE for all tests.
Nevertheless, this analysis was still possible for some runs in lane D (border rows), and lanes G
and H, where their top part was cut to mitigate the canopy effect. Figures 11 and 16 show a
comparison between CTE and GNSS measurements. They presented accuracy less than 0.05 m
along the trajectory. It is possible to see that the difference between CTE and GNSS is lower than
0.1 m and their shapes are similar. Figure 15 shows the comparison between CTE and GNSS during
a run made on lane G, where the accuracy was greater than 0.1 m in some part of the trajectory. It
is possible to see as the GNSS information started to diverge from CTE when accuracy was higher
than 0.1 m misleading information for the ground truth analysis.

All the above shows that GNSS is limited for our field experiments. Hence, we also produced
manual ground truth (GT CTE) from raw LiDAR readings. It was obtained for at least 200
scans for each scenario. Although using raw LiDAR readings is prone to the same challenges faced
by perception, such as sensor occlusion, leaves, weeds, among others, a human labeler may take
advantage of all four onboard cameras to clarify any situation. One example is to confirm the
robot’s orientation and leaf coverage, and from this information, choose which side would have best
line fitting. Additionally, unlike PL, which tries to fit rows on all scans and then checks the validity,
the human labeler may classify a scan as invalid and skip its associated row fitting process.

Figure 16 shows that ground truth with GNSS whose RTK accuracy is lower than 0.05 m
(scattered points), manual ground truth with LiDAR (black line), and our perception output (pink
line) have a great agreement. Indeed, the difference between GNSS and GT CTE has an average
of 0.094 m with standard deviation of 0.082 m, the difference between GNSS and PL CTE has an
average of 0.016 m with standard deviation of 0.062 m, and the difference between GT CTE and PL
CTE has an average of 0.078 m with standard deviation of 0.097 m. Figure 17 shows the dispersion
for the manual lane width. Although nominal row spacing is 0.75 m, actual lane width varies greatly,
and we may expect values from 0.548 to 1.072 m. The most extreme outliers are represented by the
black circles in the picture.

Table 5 shows more details. Both sides may not be always detectable on a scan (see percentage
of valid sides) due to occlusion by leaves, gap, or sparseness. With respect to the difference between
annotated lane width and expected value, the difference is lower in the continuous straight lane as
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Table 5. Manual ground truth for the controlled scenarios.
Valid left Valid right Avg. LW LW 0.05 m LW 0.1 m
side [%] side [%] [m] [%] [%]

Straight 96 99.500 0.762 83.246 97.906
Gap 96.011 93.162 0.708 53.355 87.700
Internal Border Row 78.200 91.600 0.754 76.218 95.129
External Border Row 84.053 97.010 0.771 65.164 89.344
Production Field 94.340 81.761 0.766 54.959 83.884
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Figure 16. Representation of lane G, where the top part of the rows was cut to improve RTK-GNSS. The robot
used PL+EKF and Kp = 0.35 and Kd = 0.7 for PID gains. Note the agreement between GNSS readings (greenish
scattered dots due to exceptional accuracy below 0.02 m), CTE from manual ground truth (black line), and CTE
from system (pink line). This shows that PL+EKF correctly tracked robot position with respect to lateral rows in
this oscillatory path intentionally induced by removing LGG and using different PID gains for control. Moreover,
opposed to the experiment in the well behaved lane A in Figure 14, there were several interventions (vertical gray
lines).

Figure 17. Dispersion of manual ground truth for the controlled scenarios. Although average value is close to
nominal 0.75-m row spacing, note that annotated lane width may vary within a large range. The straight scenario
has the smallest interquartile range (0.67–0.85m) while commercial has the largest (0.62–0.91 m). This shows
that perceived lane width may be significantly different from nominal value.
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Table 6. Interventions in uncontrolled tests. Percentage with respect to total
number of relevant interventions for that location.

Bad start Control Gap Perception Total
ES #1 10 (7.2%) 7 (5.1%) 93 (67.4%) 28 (20.3%) 138
ES #2 10 (12.1%) 13 (15.7%) 29 (34.9%) 31 (37.3%) 83

expected (83.246% within 0.05 m). Such difference is higher in the other scenarios as percentages
within 0.05 or 0.1 m get lower. This is caused due to the environment characteristics. Gaps are
particularly problematic because they introduce several beginnings and endings of a lane. The
beginning may be blocked by leaves, weeds, or fallen plants, and LiDAR may not clearly see ahead.
There is a progressive drop in readings as the robot approaches the end. These two interfere in
the process of finding a line representation for the respective side. Similarly, sparseness of plants
(mostly in the internal border rows) makes the system more prone to consider an eventual cluster
of leaves or weeds as part of the row since there are few plants that actually form the row. In the
cluttered lanes, there was a great influence of ground unevenness combined with the large amount
of clutter along the lane. Finally, in the production field crop, besides the mentioned issues, lane
width consistency is compromised because of corn that grew angled, the curved part of the lane,
and higher foliage.

5.3. Uncontrolled Tests
The system has also been tested by third parties, EarthSense Co. partners, in another two locations
across the United States. The datasets have been provided by EarthSense Co. and they will be
labeled as ES. The first is a corn research field whose 125–150-m lanes were further divided into
5-m sections with 0.5-m gaps between them. The system was used from 10 August 2020 to 21
September 2020. The operator’s goal was the collection of visual data, but in this case, for the
whole lane. There were 373 trials, where 365 lanes were completed with a combination of manual
and autonomous mode. The latter was used for 17235.844 m (35% of total distance). From this set,
a subset of 51 experiments (6551 m) was chosen as they met two criteria: (1) total distance over
100 m and (2) more than 90% of the traversed distance in autonomous mode.

The second is another corn research field whose lanes comprised seventy-five 4.8-m sections
separated by 0.5-m gaps, which results in 397-m lanes. The row spacing is the standard 0.8 m.
The system was used between 31 July 2020 and 27 August 2020. Since the operator’s task was
the visual data collection for either the whole lane or specific sections, expected operation distance
varied from as low as 4.8 m to 397 m. The 159 runs autonomously covered 28245.670 m.

Due to different goals for the system’s usage, a significant number of the interventions are either
end-of-lane (42 and 13, respectively) when it was expected to drive the whole lane or an operator
stopped the robot (14 and 227, respectively) when a partial data collection was aimed. Table 6
summarizes the relevant interventions for this study: bad start, control, gap, and perception.

Finally, Figure 18 summarizes all experiments with a distance per intervention metric, which is
defined as the total distance divided by the total number of interventions from the aforementioned
four relevant sources. It clearly shows that the EKF use on IAF and production field improved
the system’s performance. The uncontrolled tests used PL+EKF+LGG from the start with ES
#2 displaying a similar performance (386.9 m/interv) to IAF with EKF (400 m/interv) over an
extended distance (28 km). Unfortunately, ES #1 had a major influence of gaps (67.4% of considered
interventions) which greatly reduced the distance per intervention to 47.5 m/interv (similar to
production field with EKF, 56.1 m/interv).

5.4. Remarks about Calculation Time
Our algorithms ran on a Raspberry Pi 3, a low-cost ($35 USD) embedded computer that enables
mass deployment. Although LiDAR retrieves environment readings with 40 Hz update rate, each
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Figure 18. Distance per intervention. Note how IAF went from 51.6 m/interv without EKF (PL) to 400 m/interv
with EKF (PL+EKF). Production field also increased from 16.3 m/interv without EKF to 56.1 m/interv with
EKF. Both ES tests were performed with EKF. ES #1 was heavily affected by gaps and achieved 47.5 m/interv
while ES #2 had similar performance to IAF with 386.9 m/interv.
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Figure 19. Performance of VINS-Mono (blue line), CTE of PL+EKF+LGG (pink line), and GPS, in under-canopy
environments. It may be noted that VINS-Mono failed to track the robot’s position within lane.

scan has only 1081 elements, from which is also expected a considerable reduction (around 60%)
in number of points that would be used to extract the rows (Higuti et al., 2019). Hence, there are
much fewer data to process than a camera frame, which in low resolution would be in the order of
320× 240 pixels (177:1 ratio when compared to reduced LiDAR set). Coupled to assumptions and
constraints that simplify the problem, the core perception subsystem (PL) runs under 5 ms (Higuti
et al., 2019). In this study’s experiments, PL keeps its running time at 4.83 ms. Therefore, it is
similar to previous work. When used, EKF adds at most 2.23 ms while LGG adds another 0.77 ms.
The total time for all three methods is still considerably far from the 25 ms threshold. Since it is
less than the time between LiDAR scans, further optimization was not needed.

5.5. PL+EKF+LGG vs VINS-Fusion with Monocular Camera
Using collected data from a manual run made in lane G, we ran the VINS-Mono algorithm in order to
check if it is able to work in under-canopy environments. The result is shown in Figure 19, where it is
possible to see that the trajectory given by the GNSS (red line) and the proposed (PL+EKF+LGG)
system (pink line) are similar. However, the trajectory given by VINS-Mono (blue line) is far from
them. Thus, it is possible to say that VINS-Mono has a bad performance to be used for under-canopy
navigation. Maybe the VINS-Fusion for stereo cameras could get better results. Nevertheless, we
could not test it because our robot does not have stereo cameras.
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6. Discussion
Through controlled tests, it was possible to verify the behavior of the proposed system
(PL+EKF+LGG) in a variety of scenarios not tested in previous studies. Although the system
exhibited reliable performance in scenarios with long continuous rows (lane A and H) and uneven
terrains (lane G), interventions are still expected in edge cases such as the presence of gaps (lane B),
fallen leaves/stalks or sparseness (lane C and D), and grass and weeds (lane E and F). While gaps
present a situation with discontinuity of rows in both sides, the others cause total/partial occlusion
(see Figures 4b, 4c, and 4d).

A total/partial occlusion of LiDAR leads to a bad heading estimation, which generates a wrong
distance estimation. To find the lateral rows, the perception subsystem assumes that the YP axis (see
Figure 3) divides readings into two regions: one to the left and another to the right. Subsequently, the
lateral distance estimate is computed from the respective side set. When the heading is wrong, e.g.,
a φ = 0 in Figure 3 and YP collapses to YR, we may expect that the top right readings become part
of the left set. With this, the left side estimate will point towards the right, and the robot will drive
away from the left side instead of going towards it, to return the robot to the lane center. We tried
to use other methods to fit the lines such as RANSAC (Fischler and Bolles, 1981) in our previous
work (Higuti et al., 2019). However, there was a considerable increment in the computational cost
and loop time. The obtained result was similar to the least-squares approach. For that reason, we
did not consider it in the proposed system. Since the root cause of this issue is the LiDAR’s inability
to see ahead using only a single plane of view, the robot requires a second source of information
to determine where it is safe to go. In such context, visual information would enable perception
to get more semantic information from the environment and distinguish situations, for example,
between blocking leaves on the sensor field of view to a full-grown crop row, which should be treated
as untraversable. However, vision algorithms require a higher computational cost, which would be
unfeasible to run on a Raspberry Pi 3 in real time. A change in the main robot’s processing unit
would be necessary to run a camera + artificial intelligence (AI) algorithm, while it might offer
better results in terms of autonomous navigation.

Indeed, the use of cameras in under-canopy navigation has been shown as complex and com-
putationally costly. Researchers have used the Hough transform (Winterhalter et al., 2018) to fit
the lines from camera input or VINS-Fusion to estimate the robot pose from vision and IMU. The
Hough transform is a good algorithm to be used for above-canopy navigation where the camera
gets the top view of the rows. To use this algorithm, a corner or edge detection algorithm to create
a binary image of features should be used because it is not able to work with raw images. This
conversion has some problems in under-canopy views, because some undesired corners or edges
coming from the leaves or fallen plants are detected. Those undesired corners or edges will generate
a wrong estimation of the lines for the Hough algorithm (analogous to the occlusion problem with
the LiDAR). Figure 20 shows some results obtained from three different edge detector methods:
the Sobel derivative (Figure 20a), Laplace operator (Figure 20b), and Canny (Figures 20c, 20d, and
20e) where rows are indistinguishable. Then, it is not possible to use the Hough transform to fit the
lines using images from under-canopy environments because the current edge detector methods are
not able to generate good binary images with relevant information to extract the lines.

During the gaps, field conditions vastly vary, and most times the system does not have any
reference to follow. Besides the lack of defined rows on the gap itself, the presence of weeds or hanging
leaves on the lane entrance blocks the LiDAR scan and it falls to the same issue of sensor occlusion.
Currently, it uses the last valid values of distances and heading to continue its navigation until the
next part of the lane, going through what was blocking the sensor view and, subsequently, starts
using our proposed perception subsystem. The success of this approach depends on the heading that
the robot had at the beginning of the gap. If the heading is close to zero, then the robot is able to
pass through the gap without any problem. Otherwise, the probability of missing the trajectory will
be greater if the heading is big. One possible solution to fix this problem should be the combination
of the proposed system with a navigation based on RTK-GNSS. When the robot is in the gap, the
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(a) (b) (c)

(d) (e)

Figure 20. Edge detector methods: (a) Sobel derivative; (b) Laplacian operator; (c) Canny edge detector with
Canny threshold1 = 0 and Canny threshold2 = 0; (d) Canny edge detector with Canny threshold1 = 0 and Canny
threshold2 = 250; and (e) Canny edge detector with Canny threshold1 = 250 and Canny threshold2 = 250.

GNSS accuracy could be enough to keep the trajectory until the other part of the row is reached.
Additionally, the GNSS-based system could drive the robot at the end of the row (when the robot
is out of row and the proposed system does not have any reference to follow) in order to find the
next row to continue the navigation. This approach could address the end-of–row interventions.

The production field experiments showed that there is still a huge gap to overcome and enable our
perception subsystem in real-world crops, and not only research ones. In particular, a convergence
of rows heavily affects the lateral distance estimation. Such convergence, either originated from the
curve or perceived due to leaves, fallen stalks, or weeds occluding the actual rows, breaks the PL
assumption that rows are mostly parallel for the next meters (Higuti et al., 2019). Since PL relies on
both pre-rotation of LiDAR data to attempt having at least one of the rows parallel to the robot’s
longitudinal axis and subsequent application of a histogram to detect the rows, the lack of parallelism
significantly induces errors in estimation. This may be addressed by adding a classification step to
remove unwanted readings from objects other than the stalks and also reformulating PL to consider
curved/converging rows. Such reformulation would require generalizing the line fitting to a curve fit-
ting, and therefore all subsequent validation metrics and estimate calculations would need to change
accordingly. Instead of using a single value of cross-track error for control, another approach would
be to change the controller to a waypoint-based one, where waypoints may be generated from the
extracted curves and they would mark the path that the robot should follow for the next few meters.

6.1. Future Works
Although the performance of the proposed system (PL+EKF+LGG) was significantly more efficient
than our previous work (Higuti et al., 2019) with a lower number of interventions, some challenges
must be addressed in a future version. Some of them are (1) gaps, (2) lane change, (3) partial or
total occlusion of the LiDAR view, and (4) presence of untraversable objects as fallen stalks. For
that reason our list of future works to improve the results of the proposed system is as follows:

• Reduction of the end-of-row interventions by a hybrid system between GNSS and the proposed
system. This new system might help to improve the problem with the gaps.

• Addition of a classification step to check whether a scan is usable and also remove unwanted
readings from objects other than the stalks.
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• Generalization of line to curve fitting. This would address curves and row convergence.
• Change of controller to accommodate a set of waypoints for the next few meters instead of

using only the current cross-track error. The waypoints would represent the center of the lane.
• Creation of a system to detect when the robot collides, which enables it to stop its locomotion

and, subsequently, reduces the damage to the plants. Additionally, a recovery maneuver could
be used to return the robot to the trajectory after a collision.

• Application and possibly fusion with vision-based perception systems for under-canopy navi-
gation to reduce the interventions due to the sensor occlusion.

• Evaluation of maps and AI techniques to improve the performance of the robot navigation in
under-canopy environments.

7. Conclusions
This work reports 50.88 km field testing of an autonomous solution for under-canopy navigation in
corn crops. On its controlled tests, it showed that distance per intervention is significantly improved
when the core perception subsystem (PL) is enhanced by the proposed EKF. Such performance is
corroborated by the field results from uncontrolled tests. The intervention analysis has shown that
three major problems remain. Heading estimation and convergence of rows are present for lanes
with frequent objects such as hanging leaves, fallen stalks, and high grass and weeds, all capable
of occluding the actual rows to be followed. The convergence problem also indicates that curves
requires further attention. Finally, the most influential source of intervention was the presence of
gaps, which greatly affected ES #1 performance. All of them break the assumptions once devised to
constrain the challenge of navigating in a corn crop using a LiDAR sensor to make it feasible in the
real world. While such questions remain open for a robust autonomous navigation, the presented
PL+EKF already relieves the robot operator of the tedious task of manually driving the robot to
collect field data.
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