
Field Robotics, August, 2022 · 2:1819–1848 · 1819

Regular Article

Semantic-aware Spatiotemporal Alignment
of Natural Outdoor Surveys

Georges Chahine*,1 and Cédric Pradalier2
1College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, IRL 2958 GT-CNRS -

GeorgiaTech Lorraine
2College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, IRL 2958 GT-CNRS -

GeorgiaTech Lorraine

Abstract: This article presents a keyframe-based, innovative map registration scheme for applica-
tions that benefit from recurring data acquisition, such as long-term natural environment monitoring.
The proposed method consists of a multistage pipeline, in which semantic knowledge of the scene
is acquired using a pretrained neural network. The semantic knowledge is subsequently employed
to constrain the Iterative Closest Point algorithm (ICP). In this article, semantic-aware ICP is
used to build keyframes as well as to align them both spatially and temporally, with neighboring
keyframes and those captured around the same area but at a different point in time, respectively.
Hierarchical clustering of ICP-generated transformations is then used to both eliminate outliers and
find alignment consensus, followed by an optimization scheme based on a factor graph that includes
loop closure. To evaluate the proposed framework, data were captured using a portable robotic sensor
suite consisting of three cameras, a three-dimensional lidar, and an inertial navigation system. The
data were acquired monthly over 12 months by revisiting the same trajectory between August 2020
and July 2021.
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1. Introduction
The ability to create three-dimensional representations of the natural environment enables scientists
to achieve an improved understanding of both natural and manmade changes to nature, such as
alterations caused by pollution and human encroachment, often happening at the expense of natural
environments.

For instance, slowly occurring changes to the climate affects tree growth, flowering initiation,
and the overall natural regeneration cycle. The latter implies the need for long-term monitoring of
changes in the natural environment, as well as the ability to align these representations in space
and time, in order to perceive natural changes.
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Currently, biologists use manual techniques in order to perceive slowly occurring changes in
nature, such as recurrent image acquisition using a handheld camera. However, the latter technique
provides little insight on global changes, as the field of view is limited and suffers, like all cameras,
from fluctuating brightness conditions and the challenging task of finding the same scene, at different
time periods.

Mapping in a natural environment is a challenging task (Chahine and Pradalier, 2018) for both
lidars and cameras. Brightness conditions, wet surfaces, semitransparent surfaces such as the tree
canopy, and the lack of structure are examples of the challenges facing unconstrained mapping
algorithms in the natural environment.

Additionally, the state-of-the-art in the field of mapping does not sufficiently explore the concept
of mapping over different surveys, henceforth referred to as temporal alignment. The latter implies
the alignment of maps taken at different points in time. More specifically, and to the best of our
knowledge, no previous work explores the task of temporal alignment of natural environment surveys.
Nevertheless, the association of natural scenes from different surveys is an important concept for
environmentalists looking to qualify and quantify slowly occurring natural changes. The temporal
alignment of scenes is also relevant for routine applications involving robot navigation, such as
recurrent autonomous inspections of ship hulls and aerofoils.

Appearance-based maps depend on the ability to extract features, yet visual features cannot be
reliably and repetitively extracted from natural scenes (Chahine and Pradalier, 2018). Additionally,
establishing survey-correspondence and ensuring scene overlap between different takes can be
challenging for non-omnidirectional cameras: even with accurate positioning, scene overlap is not
guaranteed, whereas omnidirectional cameras suffer from important lens distortion.

Further, fluctuating lighting conditions, snowing surveys, and other factors are known to be detri-
mental to methods that rely on visual inputs, even if semantic knowledge is available. In the experi-
ments, we temporally align a snowy survey with other nonsnowy surveys, without any special consid-
eration or postprocessing. This is despite the fact that the presence of snow has substantially mod-
ified semantic ground segmentation, as can be seen in the first 15 seconds of the video in Figure 15.

Natural environment monitoring is an example of an application that can benefit from the
temporal alignment of natural environment surveys. For instance, such an approach can replace
the need for recurrent manual image acquisition. By aligning natural environment surveys, we show
that it is possible to provide both visual and analytical feedback of the changes occurring in the
surveyed environment.

Natural changes are slow and sometimes localized, depending on the flora diversity. For instance,
one of many tree species might be affected by evolving conditions such as pollution, whereas other
species are not necessarily affected or might not be of interest. Therefore, the perception of natural
changes is predominantly localized in character (Rosenzweig et al., 2007). The latter has been
confirmed by the many discussions with environmentalists in the Rhine-Meuse area in France. The
suggested framework has therefore been adapted to emphasize the detection of local changes around
an area of interest. To that end, a keyframe-based approach was adopted.

Keyframes are time-continuous, locally reconstructed maps, often used in the fields of mapping
and animation (Younes et al., 2017). In large scale applications such as outdoor mapping, using
keyframes facilitates data handling and manipulation. Further, a global optimization scheme can be
used to ensure spatial continuity in-between keyframes.

Keyframe-based mapping is the result of either visual or lidar-based mapping techniques. Except
for static scanners, maps created using moving platforms, such as a wheeled robot, require the
6 Degrees of Freedom (DoF) pose of the platform in order to properly integrate the map. The
state-of-the-art in Simultaneous Localization and Mapping (SLAM) provides tools that can be used
to simultaneously build the map while estimating the pose of a moving platform. An example of
these algorithms is Direct Sparse Odometry (DSO) (Engel et al., 2018), a sparse visual odometry
framework for state estimation and mapping using a monocular camera.

Laser scanners, or lidars, are among the most used sensors when it comes to generating three-
dimensional representations of the environment. Technological advancement and market accessibility
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Figure 1. The portable robotic sensor suite is a versatile piece of hardware, mounted on a backpack frame. The
sensor suite can be carried by a human or affixed to a wheeled robot.

have made lidars more accessible, reinforced by the emergence of solid state variants, that feature
low device weight and lower power consumption. The increasing interest in autonomous cars has
also driven the need for lidars with new and innovative field of views. For instance, the experiments
in this article were conducted using the RoboSense BPearl, a 16-line lidar with a hemispherical field
of view, making it suitable for installation on a vertical surface. Such is the case of the portable
sensor suite shown in Figure 1.

Lidars are capable of continuously scanning the environment in order to generate high precision
point clouds. By aligning consecutive, overlapping point clouds, it is possible to iteratively build a
map by searching for a transformation that aligns two point clouds. Some of the algorithms that
align point clouds include the Normal Distribution Transform (NDT) (Biber and Strasser, 2003),
and the Iterative Closest Point (ICP) (Besl and Mckay, 1992).

In a previous work (Chahine and Pradalier, 2019), we attempted to use DSO in order to
reconstruct the natural environment by stabilizing visual odometry with a basic 2D lidar. However,
the application was limited due to laser scan sparsity, and the dependence of the method on the
overlap between the field of view of a single camera and that of a 2D lidar. More recently, we
presented a generalized approach (Chahine et al., 2021) to mapping in a natural environment using a
factor graph architecture, which can handle multiple cameras, a 3D lidar, and an Inertial Navigation
System (INS) using a combination of visual SLAM and ICP techniques. The method was found to
be robust yet unsuitable for localized map alignment, due to its dependence on a multistage global
optimization for monocular scale estimation.

The state-of-the-art in mapping and localization, therefore, exhibits poor performance in natural
environment surveys. To the best of our knowledge, no previous work has addressed the three-
dimensional temporal alignment of natural environment surveys. The advancement of mapping and
localization techniques has, however, resulted in the formation of a rich toolbox that contains useful
tools such as factor graphs, visual SLAM, and ICP. In this paper, the latter techniques are further
adapted to challenging environments, such as natural ones, with the purpose of temporally aligning
any number of surveys.

We also address the mapping problem by constraining ICP with semantic information (Sec-
tion 3.2) in order to generate overlapping keyframes. The proposed method assumes that multiple
surveys of the same scene are performed, and that the path taken when recording each survey
is roughly the same. We then use semantic-aware ICP in the context of a matching scheme
(Section 3.3) that limits computational complexity to generate transforms that link keyframes to
each other. These transforms are then aggregated to generate multiple alignment candidates. What
follows is the alignment of keyframes from different surveys in order to create a spatiotemporal
representation of the environment. To do so, we exploit the many dimensions afforded by working
with multiple surveys in order to search for a matching consensus. Finally, the proposed framework
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Figure 2. Flow chart of the proposed framework, with dashed arrows representing optional components.
Keyframe generation, spatial alignment, temporal alignment and dendogram hierarchical clustering are further
detailed in the diagrams shown in Figures 5, 7, 6, and 10, respectively.

includes a global optimization scheme, constrained by a loop closure scheme and a Digital Elevation
Map (DEM) (Section 3.4). Our contributions are as follows:

• A mapping framework that takes advantage of semantic-aware ICP (Figure 5)1.
• A matching scheme for keyframes over multiple surveys (Figures 7 and 6).2
• A consensus-finding scheme based on hierarchical clustering, followed by an optimization step

with loop closure (Figure 10).3

2. Related Work
The state-of-the-art does not frequently address the challenges associated with mapping in the
natural environment (Chahine and Pradalier, 2018). Nevertheless, specialized applications have
driven the need for the development of techniques that can be used to detect changes (Babin et al.,
2021) by aligning spatial representations across surveys.

Other contributions such as (Biber and Duckett, 2005) present interesting solutions for long-term
map building. In the latter work, a temporal laser map registration scheme is presented that uses
wheel odometry and laser scans as input for indoor map registrations, with a semantic layer based
on a temporal probabilistic model. Compared to the proposed framework, the work of (Biber and
Duckett, 2005) is limited to controlled indoor mapping, whereas wheeled odometry is not available
in the unstructured natural environment. Additionally, the slow changes observed in outdoor natural
environments are fundamentally different from the fast or binary human-induced changes found in
an office environment. Moreover, we show that our method is scalable over 12 surveys × 1.3 KM
each, captured over a year, whereas the latter work experiments with a 5-week dataset captured in
an office hallway.

1 dream-multi-mapper (github.com/georges-chahine/dream-multi-mapper).
2 dream-multi-matcher (github.com/georges-chahine/dream-multi-matcher).
3 dream-multi-checker (github.com/georges-chahine/dream-multi-checker).
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(a) Google Earth screenshot, 2009.

(b) From the survey of September 2020.

Figure 3. Side-by-side comparison showing a keyframe from the survey of September 2020 and the corresponding
snapshot from Google Earth.

Some of the work found in the literature uses semantic labeling to detect changes. An example
of this is the work of (Varghese et al., 2019), where the authors address the problem of detecting
public space encroachment from images, using deep learning techniques to label the change. The
latter method is, however, limited to two-dimensional images and a particular application. Contrary
to (Varghese et al., 2019), the proposed framework aims at providing a rich, semantic representation,
which can be manipulated according to the needs of the task at-hand, as further demonstrated in
Section 4.5. Further, the proposed method was not designed around the constraints of any particular
application.

A couple of recent contributions, such as (Guo et al., 2018) and (Sakurada et al., 2020), specifically
address the appearance change problem, with the latter paper using semantics to do so. However,
detecting changes in image pairs is limited in scope, given the availability of alternative three-
dimensional mapping tools. On the other side, our method copies the semantic knowledge from 2D
images to label 3D point clouds, resulting an improved representation of the environment.

The work of (Stent et al., 2015) specializes in temporal alignment for change detection in tunnel
surfaces. However, (Stent et al., 2015) uses scale-lacking sparse point clouds, whereas the proposed
method uses dense, semantic point clouds, for an improved representation of the environment.
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Figure 4. Computer-Aided Design (CAD) model of the data acquisition system, used to estimate the extrinsics
between cameras, the lidar, and the INS. The resulting maps are subsequently referenced in the Universal
Transverse Mercator (UTM) system.

More recently, the state-of-the-art includes methods focusing on the comparison of three-
dimensional point cloud pairs, taken at different times (Yew and Hee Lee, 2021). In the latter
paper, the authors infer, using a neural network, a nonrigid transform to temporally align and
account for point cloud inconsistencies. The method is, however, limited to point cloud pairs, and
therefore it is not suited for long-term monitoring over multiple surveys. Conversely, the proposed
method is designed to deal with multiple input point clouds.

(Schachtschneider et al., 2017) aim at aligning point clouds captured from self-driving cars, using
inputs from different surveys in order to detect temporal map changes. The advantage of the latter
framework is that it supports multiple inputs, and is able to detect scene changes in a dynamic
environment. (Schachtschneider et al., 2017) do not, however, address the challenges of working
in a natural environment such as a forest, and instead avoid addressing the mapping problem by
using the Riegl vmx®-250 to solve the localization problem. The use of the vmx®-250 is nevertheless
limited to the availability of a Global Position System (GPS) signal, a luxury that cannot always
be afforded in a dense forest, and is specifically designed for urban mapping. The proposed method
solves both the mapping and the temporal alignment problem, using semantic-aware ICP.

The majority of the above methods are dependent on accurate GPS readings. However, the
framework we propose has a very weak dependence on GPS position estimates, a luxury that cannot
be afforded while working inside dense forests. This is due to the fact is that only a single GPS
reading is required to build and establish keyframe correspondence. Further, GPS repeatability
errors can be safely neglected, given the shear size of the keyframes being built.

3. Framework
In this section, we detail the steps taken to perform temporal or spatiotemporal alignment of
keyframes and surveys, respectively. The first step is to semantically segment the images, then
copy the semantic knowledge onto 3D points. We then use the acquired semantic knowledge to
build keyframes using ICP (3.2). Keyframes are then matched (3.3), and the generated matches are
used to find alignment consensus, as well as to generate alignment candidates (3.4). The proposed
scheme is further constrained by closing the loop and using a digital elevation map, in a factor
graph architecture. Finally, aligned keyframes are filtered, using statistical, semantic, and voxel
filters, before they undergo meshing (3.6).
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In our context, a survey is composed of a series of overlapping keyframes, taken at a given survey.
The goal is to align keyframes across different surveys, i.e., from different surveys. Additionally,
aligning whole surveys implies the stitching of overlapping keyframes both in space and time.

3.1. Semantic Knowledge
When surveying natural environments, classical mapping techniques such as ICP often require
additional constraints to properly converge (Chahine et al., 2021). To do so, we propose to constrain
ICP using semantic information, extracted from the pixel segmentation of images.

This work therefore uses a pretrained neural network for semantic image segmentation (Larsson
et al., 2019). The latter model has been trained by its authors using the cityscape dataset (Cordts
et al., 2016). The neural network can identify 19 classes of objects, such as vegetation, terrain,
ground, sky, persons, and buildings.

Using this network, we obtain a semantic segmentation of acquired images. In our experimental
setup, we segment all the images from all three cameras shown in Figure 1. The semantic knowledge
is then copied to the laser points by projecting the laser rays onto the camera image planes.

3.2. Semantic-aware ICP and keyframe generation
In this section, keyframes to-be-matched are generated using a constrained version of ICP. Further,
it is convenient to construct keyframes around continuous query points, obtained by discretizing the
GPS trajectory. This has the advantage of facilitating keyframe correspondence in Section 3.3.

This paper proposes a modified, semantic-aware ICP for both keyframe reconstruction and the
temporal alignment of keyframes. ICP is subsequently constrained:

• On the ICP matcher level:
– By rejecting point-pairs that belong to different semantic classes.
– By assigning custom weights to point-pairs that belong to similar semantic classes.

• On the data input level: by filtering points that belong to certain semantic classes, such as
dynamic objects (pedestrians) that could adversely affect the alignment quality.

Keyframes are then iteratively reconstructed using semantic-aware ICP, around a 2D GPS query
point, as shown in Figure 5. Still in the same figure, semantic weights affect the weights given to
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CAMERA 2

CAMERA 1
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Figure 5. Regular point clouds generated by a LiDAR are converted to semantic point clouds by copying the
semantic knowledge from images to laser points using the sensor suite’s CAD model. Semantic-aware ICP is then
used to solve the SLAM problem, using the INS 6-DoF increment as a prior to the state.
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match pairs in the ICP matcher, and they are also used to filter out dynamic semantic classes such
as pedestrians. Further, at the input level, a semantic descriptor filter deletes points with a weight
that is equal to zero.

As for the scan-matching process, the proposed method uses a scan-to-map approach, where
every new lidar scan is matched to all previously matched scans in a keyframe. What follows is the
forward transformation of the pose into the world frame:

M = T0T
b
l Ti (1)

Ti is the ICP scan-to-map transform, and T b
l is the extrinsic matrix describing the transformation

from the lidar to the common robot frame, also known as base link. T0 is the full 6 DoF pose of the
sensor suite at t = 0, i.e., at the start of the keyframe.

The proposed method assumes that the path taken when recording each survey is roughly the
same. When automatically generating keyframes for a list of surveys, the trajectory is discretized
into several query points while processing the first survey. The same discretization, i.e., the same
query points, is subsequently used to generate the keyframes for all other surveys. This allows the
simplification of the temporal matching process, for instance: keyframe 0 in survey 0 is matched
with keyframe 0 in surveys 1, 2, 3, ..., n. For convenience, query points are communicated in the
global latitude/longitude system, with a followup internal conversion to UTM for map registration.
For the remainder of this article, keyframe α at survey β is represented as S(α, β).

3.2.1. Overlapping keyframes
At a later stage (Section 3.3), the spatial alignment of keyframes is performed using ICP-generated
transforms. However, since ICP requires an overlap between its inputs, a continuous sequence
of overlapping keyframes is generated for every survey. In the Experimental section, keyframe
overlap is enforced by choosing a keyframe radius that is significantly larger than the distance
in-between queries. Nevertheless, the method in which the overlap is enforced is not critical to the
proposed alignment scheme. Alternative methods to create overlapping keyframes involve appending
a nonoverlapping keyframe to the previous one.

The iterative reconstruction of a keyframe is done, in part, by reusing previously found ICP
increments from previous overlapping keyframes. Such an approach has the advantage of minimizing
spatial alignment errors, given that point clouds are randomly downsampled in the matching process.
As a result, ICP is known not to generate the exact same result even with the same inputs. The
reconstruction of an overlapping keyframe is therefore a two-stage process. The first stage consists
of identifying, using lidar scan timestamps, previous ICP runs and calculating the ICP increment,
followed by a forward transformation into the frame of reference of the new keyframe. The reconstruc-
tion of nonoverlapping parts uses the last found transformation as a prior to the now resumed ICP.

In our implementation of algorithm 1, the ICP prior has been forward-transformed by the INS
increment between the current timestamp and the previous one: Pi = Pi−1Tinsi−1Tinsi

3.3. Spatiotemporal alignment
In this section, we detail the steps taken to generate multiple keyframe match estimates using
semantic-aware ICP. We also adopt a matching scheme, given the high dimensional aspect of the
problem.

The proposed method is designed to handle multiple surveys taken at different points in time.
A keyframe matching scheme is subsequently implemented, where every keyframe is matched using
semantic-aware ICP to the previous keyframe in space (Figure 7), and to all other keyframes in time
(Figure 6), in the latter case constructed around the same query.

Let Si be a survey in a list of m surveys such as i < m. For every survey Si, let S(z, i) be a
keyframe in a list of n keyframes. As previously mentioned in Section 3.2, keyframe S(0, 0) in S0
would be the natural candidate to match with keyframes S(0,∀) in S1, S2, ..., Sm, as they are all
constructed around the same query point.
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Algorithm 1. Reconstruction of an overlapping keyframe

Result: Overlapping keyframe
increments=[] ; // empty list
timestamps=[] ; // empty list
map=[] ; // empty list
P=I4×4 ; // ICP prior initialized to identity
for every scan sci in a keyframe S(z, i ) at time ti do

Ti = I4×4;
if ti > t imestamps(end ) then

Ti = ic p(sci ∈ S(z, i ),P );
Tincr = T −1

i−1Ti ;
append(increment s,Tincr );
append(t imestamps, ti );

else
find l such as t imestamps[l ] = ti ;
Tincr = increment s[l ];
Ti = TiTincr ;

end
P = Ti ;
Si = T0T b

l Ti sci ; // Equation 1
append(map,Si );

end
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Figure 6. Temporal alignment: keyframes constructed around the same query are aligned using a temporal
matching scheme, further detailed in algorithm 2. Subsequently, temporal matching candidates are generated using
semantic-aware ICP, with a two-dimensional prior inferred by aligning keyframe trajectories. Finally, matching
candidates are rearranged according to algorithm 3 and fed into an aggregation and consensus-finding scheme,
further detailed in Figure 10.

The ICP prior for spatial matches is calculated by matching timestamps in-between overlapping
keyframes from the same survey, since the first pose in a keyframe has been observed in the previous
(overlapping) keyframe. As for temporal matches, a coarse, brute force alignment of the keyframe-
associated 2D trajectories is performed to obtain the prior to ICP.

To calculate the temporal alignment prior, trajectory pairs are aligned in 2D, first by aligning
trajectory medians, followed by a minimization of the squared distance between trajectory points.
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Figure 7. Spatial alignment of overlapping keyframes belonging to the same survey. The Spatial alignment is a
by-product of temporally aligned overlapping keyframes. Overlapping pairs are matched using ICP with a prior
inferred using timestamp lookup on the associated trajectories, i.e., by calculating the increment between the
first pose in a keyframe and a corresponding pose in the overlapping keyframe, found by matching timestamps.

Algorithm 2. Temporal matching scheme

Result: List of temporal matches
logger=[]; ; // empty list
for every survey Si do

for every other survey S j such as j > i do
for every pair of keyframes S(z, (i, j )) in surveys Si and S j do

P=get_pr ior (Xz ∈ Si ,Xz ∈ S j );
transform=icp(S(z, i ), S(z, j ),P);
append(logger,transform);

end
end

end

To find the alignment prior, the brute search process uses 1 m increments along the horizontal and
vertical directions for translation, and 1 deg increments for the rotation part.

What remains is to design a matching scheme, i.e., to select keyframe match pairs for spatial
and temporal ICP matches. The spatial matching scheme consists of matching every keyframe to
the previous overlapping keyframe, whereas the temporal matching scheme consists of matching a
given keyframe to all other surveys, without replacement. The temporal matching scheme is shown
in algorithm 2, where Xz is the trajectory associated with a keyframe S(z, i).

The total number of keyframe matches implied by algorithm 2 is

n×m(m− 1)/2, (2)

which roughly translates into 4620 candidate matches or ICP runs for m = 12 surveys, each
containing n = 70 keyframes.

For the remainder of this article, we would like to clarify that the term “candidate matches” refers
to the above-calculated ICP transforms. In the upcoming section, the term “alignment candidates”
refers to any transform that aligns a keyframe to another, whether it is composed from a single
candidate match or several. The generation of alignment candidates is detailed in Section 3.4.1.

Field Robotics, August, 2022 · 2:1819–1848



Semantic-aware spatiotemporal alignment of natural outdoor surveys · 1829

3.4. Search for consensus and optimization
In the previous section, we generated a list of transformations that covers all possible alignment
options between keyframes queried at a given survey, and between overlapping keyframes. Here,
candidate matches are processed to create kinematic chains that align keyframes. We therefore
capitalize on the multidimensional aspect of the problem, in order to generate multiple alignment
candidates, by searching the previously found list of transformations.

The queried transformations are then combined to form alignment candidates, followed by a
search for consensus. The term clustering refers to hierarchical cluster analysis (Cecil C. Bridges,
1966), based on which a metric reflects on the measure of dissimilarity between clusters. Since we
would like to compare alignment candidates, which are geometric transforms in the SE(3) space,
the following metric is defined.

Two or more transformations form a consensus, or a cluster, if the distance in SE(3) between
them, consisting of the geodesic for the rotation part, and the translation norm for the translation
part is constrained below a certain threshold. The chosen data metric is calculated as follows. Let T1
and T2 be two transforms that represent two alignment candidates. Let T ′ be the increment between
the two transforms, as in T ′ = T−1

1 T2. Let ‖Tx‖ be the norm of the translation part, and let θ be the
geodesic angle norm in the axis-angle representation of T ′, estimated as the logarithm of the rotation
part of T ′, or log(TR) (Barfoot, 2017). Further, let kt and kr be two weights with an initial value
of 0.01. We now calculate the data metric used in the aggregation of SE(3) transforms [Eq. (3)],

d(T1, T2) = ||T ′||SE(3) = 1
kt
||Tx||+

1
kr
||log(TR)|| (3)

The above metric is then used as a measure of dissimilarity between observations. The numerical
significance of the data metric shown in the above equation lies in the weights used. For instance, if
kt = kr = 0.1, then 0.1 m of translation is equally penalizing as 0.1 rad of rotation. The smaller kt

and kr are chosen, the more closely knit cluster members are. In the proposed implementation, kt

and kr are incrementally increased in steps of 0.05 until a cluster is found. Additionally, a link (or
observation) is discarded if the values of kt and kr exceed 0.5 without finding a consensus.

3.4.1. Generation of alignment candidates
Candidate matches are then used to generate multiple alignment options for each keyframe. A
sample showing at least two alignment options between two keyframes is shown in Figure 8. Still in
the same figure, it is possible to align keyframe 1 at time period 2 with keyframe 1 at time period
1 by inferring the transformation directly from candidate matches, marked by a red arrow in the
mentioned figure. Alternatively, the alignment can be achieved by going though keyframe 1 at time
period 0, marked by green arrows. Furthermore, it is possible to make two jumps before reaching
the desired keyframe and time period, an example shown by blue arrows. The proposed method,

S(0, 0) 

S(0, 1) 

S(0, 2) 

S(0, 3) 

S(1, 0) 

S(1, 1) 

S(1, 2) 

S(1, 3) 

S(2, 0) 

S(2, 1) 

S(2, 2) 

S(2, 3) 

=?=?

Figure 8. A graphical interpretation for the generation of temporal alignment candidates, detailed in algorithm 3.
As a reminder, i in S(i, j ) represents a keyframe number, and j represents a survey. Keyframes with the same i
are queried around the same position but for different surveys, with both i and j being continuous in space and
time, respectively.
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however, limits the number of intermediate jumps to two in order to prevent error accumulation, and
to reduce problem complexity, with the presence of a high number of keyframes and time periods.

Groups to be clustered are therefore formed by aggregating candidate matches over all possible
paths. The implications of the data generated by the matching scheme in Section 3.3 further
constrain intermediate jumps to either within the same keyframe number, i.e., vertical arrows
(Figure 8), or within the same survey by jumping to the next, or previous, overlapping keyframe,
i.e., horizontal arrows (Figure 8).

The proposed general solution for the multiple path problem is presented as follows:
Let T be a list of candidate transforms that aligns keyframe i at time period j, henceforth

known as S(i, j), with S(i, j − 1), such that 0 ≤ i − 1 < i + 1 ≤ m and 0 ≤ j − 1 < j + 1 ≤
n, where m and n are the total number of keyframes and time periods (surveys), respectively.
Let query_tf(i1, j1, i2, j2) be a query function that performs value lookup in the transformations

(a) Google earth screenshot, 2009. (b) From the survey of December 2020.

Figure 9. Side-by-side comparison showing a keyframe from the survey of December 2020 and the corresponding
snapshot from Google Earth.
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Figure 10. Matching candidates generated by algorithm 3 are then clustered using dendogram clustering. In the
majority of cases, multiple clusters are expected. A selection scheme therefore selects the parent keyframe with
the most tightly knit clusters. Finally, a graph-based optimization scheme allows the integration of a DEM into
the framework and activates the loop closure constraint.
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Algorithm 3. Generation of alignment candidates between two keyframes

Result: Candidate transforms for aligning keyframes S(i, j ) with S(i, j − 1).
T=[] ; // empty list of transforms
t f = query_t f (i, j, i, j − 1);
append (T , t f );
t f1 = query_t f (i, j, i + 1, j );
t f2 = query_t f (i + 1, j, i + 1, j − 1);
t f3 = query_t f (i + 1, j − 1, i, j − 1);
t f = t f3 ∗ t f2 ∗ t f1;
append (T , t f );
t f1 = query_t f (i, j, i − 1, j );
t f2 = query_t f (i − 1, j, i − 1, j − 1);
t f3 = query_t f (i − 1, j − 1, i, j − 1);
t f = t f3 ∗ t f2 ∗ t f1;
append (T , t f );
for every time period x do

if x 6= j and x 6= j − 1 then
t f1 = query_t f (i, j, i, x );
t f2 = query_t f (i, x , i, j − 1);
t f = t f2 ∗ t f1;
append (T , t f );

end
end

previously found in Section 3.3. What follows is the generation of alignment candidates for S(i, j)
to S(i, j − 1), shown in algorithm 3.

Across n time periods, the total number of alignment candidates for S(i, j) with S(i, j − 1) is
calculated as 3 + (n− 2) = n+ 1 alignment candidates for each keyframe.

The transformation matrices are then fed into a multistage hierarchical clustering algorithm
in SE(3). The final selection is made on the biggest cluster or the cluster with the smallest
standard deviation, if tied. Rotation and translation components of the chosen cluster elements are
then averaged using Spherical Linear Interpolation (SLERP) (Shoemake, 1985) and classic linear
interpolation, respectively. If no consensus is to be found below the chosen threshold, then the
concerned link is discarded.

Additionally, a common frame of reference for each keyframe across all surveys needs to be chosen.
In other words, there is a need for the designation of a parent keyframe that sets the frame, along
which all other corresponding keyframes will align.

The parent frame is selected in order of priority:

1. The frame that aligns with the least number of discarded links.
2. If tied, the frame that aligns with the lowest average of an error term, calculated by averaging

out an SE(3) distance metric between cluster centers and their respective members, as shown
in Eq. (4).

E = ‖x‖+ log(R), (4)

where E is the distance metric between the cluster center and one of its elements, all expressed in
SE(3). ‖x‖ is the norm of the difference between the two translation vectors, and R is the rotation
associated with the rotation increment between the two attitudes, i.e., between the cluster center
and the chosen element.

As for spatial alignment, alignment candidates are generated in the frame of reference of the
previously found parent frames, followed by the same hierarchical clustering algorithm. Aligning in
the frame of reference of the parent frame has the advantage of simultaneously spatially aligning a
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block of keyframes across all surveys, with its overlapping neighbor block of keyframes, also expressed
in the frame of its own parent.

3.5. Loop closure and optimization
A survey is assumed to be a spatially continuous set of keyframes. As previously mentioned, it is
assumed that the same trajectory is roughly followed during each survey, although the starting point
for every survey can be different.

(a) From the survey of August 2020 (b) From the survey of September 2020 (c) From the survey of October 2020

(d) From the survey of November 2020 (e) From the survey of December 2020 (f) From the survey of January 2021

(g) From the survey of February 2021 (h) From the survey of March 2021 (i) From the survey of April 2021

(j) From the survey of May 2021 (k) From the survey of June 2021 (l) From the survey of July 2021

Figure 11. Cross-sectional view of 12 aligned keyframes, shown on top of each other against a 2 × 2 m. grid.
Points in pink correspond to the survey shown in the associated figure caption. In the video, a cross-section of
the above is performed to show the distribution of points from different surveys against a grid. The corresponding
animation as well as the method used to generate it can be seen here (https://youtu.be/YhE9wEt2kMQ).
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If the trajectory loops, then it is possible to close the loop in order to reduce and correct for
error accumulation sources, such as positional drift. Further, it is assumed that the same behavior,
i.e., the same movement pattern, is roughly copied in surveys taken at different time periods. We
therefore aim to exploit the temporal aspect of the loop closure problem.

Loop closure is performed by geographic query of revisited parts using timestamps as well as the
trajectories to detect if a keyframe is being revisited, after being initially exited. This particular
scheme is further detailed in (Chahine et al., 2021). The keyframes are then matched using ICP.
This is repeated over all surveys, building on the assumption of a repeated behavior.

The revisited keyframes for loop closure are then aligned to their respective parent keyframes,
which allows the comparison of the SE(3) candidate transforms across all time periods. The latter
group is then clustered using the same hierarchical clustering scheme used in Section 3.4.

3.5.1. Factor graph
Factor graphs are flexible tools that can be used to fuse data coming from different sources. A factor
graph is composed of nodes, interconnected by constraints such as transformation increments, as
well as priors containing absolute knowledge, such as a DEM. An initial estimate is subsequently
refined during an optimization and smoothing step.

Using a factor graph architecture, we propose a nonlinear least-squares optimization, whose
purpose is to constrain and optimize the spatiotemporal kinematic chain by closing the loop and
using DEM data to sparsely constrain the z-component.

The proposed factor graph is composed of nodes representing serialized keyframe numbers and
time periods, for a total of m×n nodes. These nodes are connected by constraints, composed of the
chosen spatiotemporal alignment increments, with respect to the parent frames. To these constraints
we add the loop closure cluster average transformation if a clustering consensus is found. Finally,
we also add a z-component prior, also known as a unary factor, to constrain the keyframe altitude
according to the DEM.

The factor graph, shown in Figure 13, is subsequently optimized and a refined list of spatiotempo-
ral alignment candidates is obtained. In the experiments, the g2o (Kuemmerle et al., 2011) framework
was used, with a robust Cauchy kernel and a classic Levenberg–Marquardt (Moré, 1978) solver for
the underlying least-squares problem. Factor graph node priors are the spatiotemporal alignment
candidates that belong to the chosen parent frame, for every keyframe. We will also use the clustering
metric as a measure of confidence, i.e., kr and kt for the rotation and translation components,
respectively.

(a) Exploded view of a keyframe aligned over 12
surveys captured on-foot over 12 months, plus one
additional keyframe captured around the same loca-
tion using the clearpath Husky UGV. Animation: here
(https://youtu.be/z9EeinFAd78).

(b) Top view of 12 aligned keyframes stacked on top
of each other, captured on-foot over 12 months. A
video showing the above point clouds being manipu-
lated is available here.

Figure 12. Multiview and animated point cloud manipulation of the temporal alignment of a keyframe captured
around (l at itude, l ongitude) = (49.103622, 6.216097).
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Figure 13. The proposed factor graph architecture, with a loop closure and sparse DEM constraints.

Table 1. Meshing parameters using the Las Vegas Reconstruction Toolkit
(Wiemann et al., 2012).

Parameter Value
Voxel size 0.1
Voxel decomposition type Tetrahedron
Number of normals for distance function evaluation (kd ) 10
Edge collapse percentage 0.1
Number of normals used in the interpolation process (ki) 10
Removal of dangling artifacts 100
Number of normals used for normal estimation (kn) 300
Small region threshold 30
Grid extrusion False
Surface optimization False
Maximum size for hole filling 100
Tessellation False

3.6. Meshing, filtering, and map visualization
In this section, the now aligned point clouds are further processed in an effort to produce visually
appealing maps that can also be used for change detection. To do so, point clouds are filtered using
a statistical filter, followed by a semantic class filter. Point clouds are then voxelized, meshed, and
exported for visualization.

After optimization, the keyframes and their associated trajectories are reexported by applying
the previously refined alignment. During the export step, points associated with selected semantic
classes are filtered, based on the application at hand. Outlier points, which are more than one
standard deviation from their ten nearest neighbors, are also filtered using a statistical outlier filter.
The overlapping parts of keyframes are also filtered out, using timestamps, by removing points that
have already been observed in the previous keyframe.

Point clouds are then meshed using the Las Vegas Reconstruction (LVR) toolkit, without grid
extrusion, as it was found to significantly increase the number of artificially induced artifacts.
The latter is due to the absence of planar surfaces, and to the chaotic nature of an unstructured
natural environment. The meshed point clouds are then visualized using VTK (Schroeder et al.,
2006) and Paraview (Ahrens et al., 2005) for an in-depth navigation of the meshed point clouds.
An example of such navigation, captured on a small boat in the Orne River, is shown here
(https://youtu.be/K709A0ckggI).
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(a) Maximum zoom using Google Earth, 2009. (b) From the survey of January 2021, top view.

(c) From the survey of January 2021, side view. (d) From the survey of January 2021, cross-sectional view
inside the canopy.

Figure 14. Side-by-side comparison of a keyframe from different viewpoints, taken from the survey of January
2021 and the corresponding snapshot from Google Earth. Note that it is not possible to perceive the inner part
of the above canopy using Google Earth.

4. Results and Discussion
4.1. About the data
The dataset was captured using the portable robotic sensor suite shown in Figure 1. The data
acquisition device consists of two cameras looking sideways and one camera looking backwards.
All cameras are equipped with a 3.5 mm lens, with a field of view of 117◦ along the the diagonal.
Additionally, the RS-bPearl, a 16-line lidar with a hemispherical field of view, is facing backwards as
well, with a significant overlap with the field of view of all three cameras. Moreover, an INS provides
a noisy estimate of the 6-DoF pose by fusing GPS and Inertial Measurement Unit (IMU) estimates.
For an improved estimate of the extrinsics, all sensor fixtures were 3D-printed using design shown
in Figure 4. Further, the sensors are externally pulse-synchronized.
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(a) Snapshot from Google Maps
showing the 1.31 KM trajectory taken
during each survey. White control
points are required to draw the tra-
jectory on Maps.

(b) Corresponding reconstruction,
here using the survey of March 2021

(c) Snapshot of an in-depth navigation of
aligned and meshed point clouds across mul-
tiple surveys. The full video can is referenced
in the below caption.

Figure 15. Three-dimensional reconstruction of the area around lake Symphony in Metz, France. A more detailed
insight can be acquired by watching the following video in 1080p: click here (https://youtu.be/iB0Qn1Xeuog).

The data were captured over 12 months spanning between August 3, 2020 and July 1, 2021,
around Lake Symphony in Metz, France. The trajectory taken, drawn in Figure 15a, consists mostly
of mud trails with minimal human intervention, in places spaced with bike lanes, surrounded by
trees and the lake itself. The surveys of January and February 2021 were recorded in exceptionally
snowy conditions.

4.2. Generation of semantic keyframes
The data, recorded using ROS (Stanford Artificial Intelligence Laboratory et al., 2018), were
processed after each data acquisition. Postprocessing consisted of extracting the images, followed
by the semantic segmentation of the latter images using a pretrained neural network (Larsson
et al., 2019) from the literature. The uncompressed size of a survey is around 150 GB, for a
total of around 1.7 TB of data. What follows is the transfer of semantic knowledge from the
classified images to the lidar point cloud. An example of such classification can be seen here
(https://youtu.be/dYBxGqGkqmY). For practical reasons, and due to the sheer size of the data,
the compressible rosBAG format was found to be well suited in keeping the data compact and easily
accessible, even after introducing systemic changes.

Afterwards, we administer semantics onto lidar points, a process during which semantic informa-
tion is reencoded into lidar data. The pinhole model was used to transfer the semantic knowledge
from each camera’s frame of reference onto the lidar’s frame of reference: p = A[R|t]Pw, where Pw

is the 3D point to-be-colored, [R|t] is the extrinsic matrix that provides the geometric connection
between lidar and camera frames, A is the camera intrinsic matrix, obtained by checkerboard calibra-
tion, and p(u, v, 1) is the point where the lidar point to-be-colored happens to fall on the image plane.
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Table 2. List of Parameters used during keyframe
reconstruction, minus the ICP parameters shown
in Table 3.
Parameter Name Mapper
Voxel size 0.1 m
Keyframe query radius 70 m
Keyframe offset 27 m
lidar cutoff distance 30 m

Table 3. List of ICP Parameters, used during keyframe generation (first column, mapping) and the spatiotem-
poral generation of matching candidates (second column, matching).

Parameter Name Mapper Matcher
Matcher KD tree matcher KD tree matcher
Matcher KNN size 20 2000
Max iterations 40 500
Rotation norm threshold 0.5 1
Translation norm threshold 15 45
Random input sampling probability 80% 4%
Bounding box −1 < x , y, z < 1 -
Maximum input point density 10 10
Maximum ICP map point density 10 -
Semantic Parameters:
Filtered semantic classes Sky, person, rider, car, truck, bus,

train, motorcycle, bicycle, ground
Sky, person, rider, car, truck,
bus, train, motorcycle, bicycle

Semantic weights sidewalk: 0.5, building: 1, wall: 1,
fence: 0.5, pole: 1, traffic sign: 1,
vegetation: 1, terrain: 1

Ground: 0.05, sidewalk: 0.5,
building: 1, wall: 1, fence: 0.5,
pole: 1, traffic sign: 1, vegeta-
tion: 0.75, terrain: 0.05

Automatic keyframe reconstruction was performed by discretizing the INS trajectory into query
points. Overlapping keyframes are subsequently constructed around these points using a fixed radius.
Keyframe overlap is guaranteed by keeping trajectory discretization significantly smaller than the
keyframe radius. The parameters used during keyframe reconstruction are shown in Table 2.

Subsequently, a keyframe was constructed around each query point using semantic-aware ICP,
configured with the parameters and semantic weights presented in Table 3. The parameters were
tuned only once by trial and error in a challenging area where regular ICP failed to converge. The
scene, located around (lat, long) = (49.103631, 6.216095), is dominated by trees and includes a
canopy. The same set of parameters was used for all 12 surveys. Further, semantic ICP mapping
was successfully experimented in a different environment and without any change to the parameters.
The environment consisted of a moving kayak inside the Orne River. The corresponding video is
referenced in Section 3.6.

For further processing and in order to remove the overlapping parts at a later stage, keyframes
and their trajectories are exported alongside the timestamps associated with every point in the
cloud. We experimented with other keyframe building solutions, such as regular ICP, HDL SLAM
(Koide et al., 2019), and LOAM (Zhang and Singh, 2014), with no or limited success. Although
semantic-aware ICP was able to produce high-quality keyframes, the choice of a keyframe builder
is not critical to the proposed alignment scheme.

4.3. Spatiotemporal alignment
To exploit the multidimensionality of the spatiotemporal alignment problem, temporal alignment
needs to precede spatial alignment in order to allow multiple solutions to the spatial alignment
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problem. This is due to the fact that spatial matches can only happen in-between consecutive,
overlapping keyframes. Nevertheless, if temporal alignment precedes, it is possible to compare spatial
displacement across other time periods, as detailed below.

For instance, the spatial alignment of two keyframes during t0 can be inferred from the temporal
alignment with similar keyframes taken during t1. Further, it has been observed that keyframes
are not perfectly reconstructed, even if the difference is not visible to the human eye. In a looping
trajectory, this leads to error accumulation on the spatial level. Ideally, keyframes need to be wrapped
both on the spatial and temporal level in order to considerably eliminate the effects of such error, and
to prevent its propagation to the temporal aspect during a global optimization effort, i.e., temporal
links might be minimally broken to satisfy the loop closure constraint. This work, however, does
not address this type of deformation.

The keyframes generated in Section 4.2 are then matched using ICP, using the scheme presented
in algorithm 2, with a voxel size of 0.15 m, and using the parameters presented in Table 3.

The list of transforms is then aggregated into alignment candidates according to algorithm 3. The
latter is followed by the clustering of alignment candidates, as presented in Section 3.4, including
loop closure.

Chosen SE(3) clusters, representing chosen alignment candidates, are fed into a factor graph. The
latter architecture can be represented by Figure 8, where nodes are keyframes and arrows represent
the chosen kinematic links in the consensus-finding step. What follows is the sparse addition of
DEM priors, sparsely constrained using unary factors. Finally, point clouds are exported, meshed
using LVR, and visualized using Paraview.

4.4. Discussion
4.4.1. Quantitative assessment
In this section, we quantify the spatiotemporal alignment process by analyzing the alignment quality
for generated maps and their trajectories. We also discuss the chosen clustering parameters, and
we analyze the effect of choosing a certain voxel size for matching keyframes using ICP, using
optimization residuals.

Figure 11 shows a slice of 12 keyframes stacked on top of each other. The section-view shows a
variation in ground level of less than 1 m, yet not the same is happening on the tree level. This is
due to the low weight given to ground points, as shown in Table 3, leading ICP to align to vegetation
with varying levels.

Aligned trajectories in Figure 16d seem to fit well within the actual width of the trajectory at the
query point, which has been manually measured on Google Maps around (49.1055172, 6.2165781),
having a value of 2.3 m.

The effect of choosing a voxel size during keyframe matching has a visible effect on the
optimization process. Although the difference is visible to the human eye, here we attempt to
quantitatively compare the matching quality for different voxel sizes. To do so, a strong correlation
was found between the human perception of alignment quality, voxel sizes, and the value of χ2.

The optimization residual, χ2, describes how well a set of observations, in this paper described as
constraints, fits the factor graph model and penalizes incoherence in the implemented architecture,
for example when constraints are in conflict. Therefore, in the proposed implementation, the value
of χ2 penalizes for inconsistencies originating from ICP misalignment, loop closure errors, and DEM
inconsistencies. By only varying voxel sizes during the matching step, the residual value of χ2 in
Figure 17 shows an improved convergence of the factor graph’s underlying nonlinear least squares
optimization for values between 15 and 25 cm. The presented analysis, however, does not reflect
on the overall alignment quality, and is only useful in comparing voxel sizes against the overall
performance of the system.

Figure 18 shows the stopping value of the clustering parameters discussed in Section 3.4. As a
reminder, the stopping value is reached when at least two alignment candidates are close enough
in the SE(3) space to form a cluster. Still in the same figure, 91.5% of the chosen clusters had a
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(a) Trajectory spatiotemporal alignment without loop closure
and without reusing previously found transforms for overlap-
ping keyframes
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(b) Trajectory spatiotemporal alignment without loop clo-
sure, while reusing previously found transforms for overlapping
keyframes (algorithm 1)
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(c) Trajectory spatiotemporal alignment with loop closure,
while reusing previously found transforms for overlapping
keyframes.
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(d) Close-up look at a portion of the trajectory. Each
line represents the path taken at different surveys,
around (l at , l ong) = (49.1055172, 6.2165781)

Figure 16. Qualitative assessment of trajectory alignment, a by-product of keyframe alignment. Animation: here
(https://youtu.be/ITfek6fPS5w).
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Figure 17. Evolution of the value of χ 2, a factor graph optimization residual, for voxel sizes of 10, 15, 20, and
25 cm during ICP keyframe matching. The significance of χ 2 is further discussed in Section 4.4.1.
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Figure 18. Distribution showing the values of clustering parameters kr and kt , here for chosen links only, i.e.,
after a consensus is found. The total number of matches is 839, representing 12 surveys each containing 70
keyframes, minus the loop closure link.

stopping value for kr and kt that is smaller than or equal to 0.1, whereas over 65.7% of the clusters
had a stopping value, for the same parameters, that is smaller than or equal to 0.05. We would like
to note that values below 0.1 denote tightly knit clusters and a strong alignment consensus. Finally,
six links were not associated with clusters, causing the associated keyframes to be discarded. The
latter represents less than 1% of the 839 matches represented in the same figure. Although unitless,
the physical implications of kr and kt are described in Section 3.4.

By comparing the number of vegetation points across different months, Figure 21 shows a
minimal level of vegetation cover during winter months, between December and February, with
around 20% decrease by February. The trend subsequently recovers during summer months, with
values pertaining to July 2021 nearly equal to those captured in August 2020. The semantic class,
however, includes all types of vegetation, including tree barks, which means that the difference
between seasons could be underestimated.

4.4.2. Qualitative assessment
Keyframe reconstruction quality was remarkably appealing to the human visual system, aided by
semantic colors as shown in Figures 9, 14, and 3. The alignment quality can be qualitatively evaluated
by looking at Figure 12a. Further, a satisfactory alignment of natural environment surveys implies
the possibility of perceiving slowly occurring natural changes, as shown in Figure 19.

Figure 12b shows keyframes queried at all 12 surveys, stacked on top of each other and viewed
from the top. From a topological point of view, trees, the trail, and the ground are easily perceivable.
The accompanying video, showing the keyframes being manipulated, shows an adequate alignment
from all other sides as well.

Trajectory alignment is shown in Figure 16. When compared to Figure 16a, Figure 16b shows
the effect of reducing ICP runs in the overlapping parts (algorithm 1), with less drift shown in the
area where the trajectory loops. Drift is further reduced after adding the loop closure constraint,
as shown in Figure 16c. The difference between the latter three images is well observable in the
reference video, still in the same figure.

The DEM contributed to constraining keyframe altitude. Nevertheless, since the DEM is queried
using noisy GPS data, it has been observed that a sparse constraint is better suited in order to limit
drift without interfering with local estimates. This is similar to the approach used to limit drift by
sparsely constraining factor graphs using GPS in (Pradalier et al., 2021) and (Chahine et al., 2021).

Figure 15, and most importantly the video referenced in its caption, shows an in-depth navigation
inside multiple point clouds from different surveys. The point cloud camera was constrained using a
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(a) Snapshot taken from the survey of March 2021 (b) Snapshot taken from the survey of April 2021

(c) Snapshot taken from the survey of May 2021 (d) Snapshot taken from the survey of June 2021

Figure 19. Visual perception of natural changes: time-lapse showing slowly occurring changes, a product
of temporal alignment. A collection of additional time-lapses can be seen in the following video: click here
(https://youtu.be/2tmxL0rMDqg).

single trajectory from August 3, 2020, further adapted to constrain both the position and the focal
point of the virtual camera in the other 11 point clouds.

As for semantic segmentation, it has been observed that vegetation classification is visibly robust,
yet it is less reliable for ground points, probably due to the low grazing angle of the camera with
respect to the ground. The proposed method, however, treats terrain, ground, and sidewalk points
as ground points. This is especially true for natural environments, since ground and vegetation are
of primary interest.

4.4.3. Ablation study
This section highlights the effects of adding semantic knowledge, ICP priors, and the optimization
process by testing the proposed method with and without the latter components.

Semantic Knowledge
Without semantics, ICP keyframe building was still successful in semiurban parts of the survey.
However, ICP struggled to converge in the most natural parts of the survey, rough turns, and in
places with very few features, consisting mostly of terrain and ground.

Semantic-aware ICP only failed once during all 12 surveys, on the rough turn shown in the
rightmost part of Figure 22, specifically for the keyframes covering that area during the July 2021
survey. The parts that failed without semantics accounted for around 53% of the total trajectory.

INS prior for keyframe building
With semantics enabled, the effect of adding INS increments as a prior to keyframe reconstruction
was found to be minimal. Without a prior, we managed to reconstruct 9 out of 10 semantic keyframes.

Without semantics, keyframe building was significantly more dependent on INS increments,
failing in areas with poor GPS coverage (and therefore poor INS increments) in the most natural
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(a) Semantic keyframe.

No Changes

Other changes

No data

Seasonal Changes

Probability

(b) Changes Heatmap.

Figure 20. Heatmap and semantic representations of a keyframe. Semantic knowledge was not used in the
generation of the heat map, yet it is shown for convenience.

Figure 21. Percent change in the semantic label “Vegetation” for five randomly selected keyframes, showing a
minimum during winter months, between December 2020 and February 2021.

parts of the survey. Five out of ten keyframes were reconstructed without semantics and without
an INS prior, all of them in semiurban areas. It should be noted that the underlying GPS-IMU
Extended Kalman Filter (EKF) fusion behind the INS system does not perform as well on-foot as
it does with significant dynamics, such as when in a car. The Vectornav INS datasheet explicitly
requires a speed of at least 4 m/s (15 km/h), about three times the average walking speed of a
human, for a proper functioning of the EKF fusion.

Keyframe trajectory prior
Without an alignment prior, keyframe to keyframe matching was largely failing, even with semantics,
and taking a lot of time to converge. The conclusion is consistent with the work of (Pradalier et al.,
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Figure 22. Red: areas where ICP keyframe building was inconsistent or failed, without semantic knowledge.
Green: areas where semantic-aware ICP was not necessary for successful keyframe reconstruction.

2019). A 2D trajectory prior is absolutely necessary for keyframe matching, and it is more critical
to the pipeline than the ICP prior for keyframe reconstruction.

The optimization effect
In this article, keyframes are manipulated as rigid bodies. As discussed in previous sections,
optimization with loop closure and a DEM was found to visibly reduce overall drift. Nevertheless,
a slight improvement in spatial keyframe stitching was found without optimization, an expected
result of the rigid body assumption. In a future work, a non-SE(3) optimization has the potential
to address this problem.

4.5. Applications
In this section, we present sample applications that can benefit from the proposed framework. Such
applications are dealing with change perception and change detection. Change perception is the
ability for a human to easily perceive natural changes by benefiting from the three-dimensional
alignment of surveys captured at different time periods. Change perception is, however, subjective
in nature, and therefore falls in the qualitative category. In contrast to the latter, the quantification
of natural changes aims at providing numbers that relate to slowly occurring changes in the natural
environment. Finally, the purpose of detecting changes is to guide the operator to geographic points
of interest for further inspection.

4.5.1. Visual perception of seasonal changes
Changes are easily perceived in the time-lapses shown in the following video (https://
youtu.be/2tmxL0rMDqg), as well as in the following video (https://youtu.be/iB0Qn1Xeuog). In
the latter videos, seasonal changes are visible in the tree species that undergo major changes to
foliage density. Nevertheless, an upgrade of the 16-line lidar can lead to an improved perception of
small details, and it would make the point cloud less susceptible to meshing artifacts. In Section 4.5.2,
we present an example of how seasonal changes can be automatically detected and quantified.

4.5.2. Change quantification
In this section, we propose an example of how to detect changes in aligned keyframes, as well as
areas with no or little change.
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By comparing nearest-neighbor points in aligned keyframes, it is expected that significant changes
to tree foliage can be detected. We therefore propose to compare the z-component in-between nearest
neighbors across multiple seasons. To that end, a metric was derived: metric =

√∑
(Z0 − Zj)2,

where Zj is the Z component of the nearest neighbor in time period j, matched with its nearest
neighbor in the corresponding keyframe in time period 0 (August).

Since natural changes are local, and given the considerable size of the keyframes generated in
Section 4.2, the above metric was calculated by matching nearest neighbors in 3000 5×5 m randomly
distributed patches inside keyframes. The number of patches was chosen to be sufficiently high, so
as to increase the number of points that belong to more than one patch, which allows the estimation
of a classification probability, based on the number of times a point shared by multiple patches has
been observed.

The first time period (August) was taken as a reference while penalizing altitude differences
with the nearest-neighbor points from all the other months. Further, to eliminate noise that might
affect change detection, such as occasionally accumulating snow on trees in January, the data are
smoothed using a moving average, with a sliding window that spans over two months.

The formulated metric term is designed to be sensitive to seasonal changes, due to the leaf and
structural growth undergone by vegetation. Additionally, seasonal changes can be modelled using
sinusoidal functions (Stolwijk et al., 1999). We now propose to detect natural changes by fitting a
sinusoidal model, shown in Eq. (5), to the data inferred from the changes metric.

model = Y scale× sin(X −Xshift
Xscale

) (5)

Giving the arbitrary starting point of the dataset (August), a sinusoidal change trend that peaks
somewhere around winter is expected, followed by a recovery as summer approaches. Plants also
exhibit different flowering and leaf abscission periods in the spring and fall, respectively. To generalize
the proposed application, we recommend a flexible sinusoidal model that can be shifted horizontally
to account for different flowering periods, and can be scaled both vertically and horizontally, to
account for other discrepancies such as leaf shedding and the period during which trees remain
leafless. In Eq. (5), the parameters Xshift, Xscale, and Y scale are estimated using nonlinear least
squares, where X is a uniform discretization ranging from 1 to 12, i.e., representing August to July.

An example of the quantification of seasonal changes can be seen in the sinusoidal-like trends
shown in Figure 24.

Since natural changes follow sinusoidal trends, we expect a decent fit to the model presented in
Eq. (5) in the case of seasonal changes. An example of unnatural changes is shown in Figure 23,
where a sports playground was erected in place of an area covered with grass. This is reflected in

(a) Snapshot from the sensor suite taken around February
2021.

(b) Snapshot from the sensor suite taken around June
2021.

Figure 23. A non-natural change to the environment. The change can be distinguished from natural changes
in Figure 24.
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(a) Non-natural change, shown in Figure 23 (b) An example of natural changes (1/3)

(c) An example of natural changes (2/3) (d) An example of natural changes (3/3)

Figure 24. Sinusoidal fit to the changes estimated according to the model presented in Section 4.5.

the value of R2, as shown in the makeshift playground introduced after March 2020 in Figure 24a,
against natural changes observed in the three other figures in Figure 24.

4.5.3. Heat map
In this section, we present a heat map generated from automatically detecting areas with no change
and those showing signs of natural changes. The probability field shown in Figure 20 has been
inferred from recurrent observations of the same point, as discussed at the beginning of Section 4.5.

The proposed application is also capable of automatically detecting areas with no significant
changes. To do so, an area is considered to undergo no changes either if it consists only of ground
points, or if the same points are observed at another time period. Taking the first time period as a
reference, we eliminate nearest neighbors in-between aligned keyframes. A patch is then labeled as
“no change” if no or very few points remain after eliminating nearest neighbors. A second stage filter
removes points that belong to a plane, estimated using RANSAC (Fischler and Bolles, 1981), to
remove residual ground points, and it eliminates occasionally detected building facades. Detecting
areas of no change was found to significantly reduce the chances of false positives when it comes to
detecting natural changes.

Figure 20 shows a heat map generated using the proposed application. Still in the same figure,
the vast majority of green areas, indicating seasonal changes, happen to fall on points semantically
segmented as vegetation. Further, blue patches show increased confidence in areas classified as
terrain, ground, and sidewalk, where no changes are expected beyond grass growth.
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Still in Figure 20, the heat map was generated by first labeling areas with no changes, followed
by the detection of sinusoidal seasonal changes. Remaining points are either not queried, shown in
yellow, or shown in red to represent indeterminate changes, or false positives due to lidar coverage
discrepancies in-between surveys.

5. Conclusion
We have presented a robust, keyframe-based spatiotemporal alignment framework for surveys
captured in natural environments. It has been shown that the proposed method is capable of aligning
monthly, multiseasonal natural environment surveys taken over 12 months. Further, it has been
observed that ICP can be considerably constrained using semantic priors, without the need for an
exhaustive search of the parameters.

We also presented a matching scheme that organizes ICP keyframe matching. Matches were
then rearranged to form alignment candidates, with a follow-up hierarchical clustering that selects
candidates with the most favorable consensus.

The proposed method is scalable in the sense that it can handle significant amounts of data, as
shown in the Experimental section. In addition to that, we presented two applications that benefit
from the proposed framework. The latter is, however, dependent on the successful fusion of data
coming from multiple sources, a luxury that cannot always be afforded.

As for limitations, a very bad GPS coverage can lead to bad or no correspondence. For that to
happen, a loss of the GPS fix will have to occur exactly on a query point. A brief loss of the GPS fix
outside of a query location has no to little effect on the pipeline, as it would result in the scrapping
of the associated scans, that is, assuming that the INS was unable to compensate for a brief loss of
observations.

Future work could involve real-time change detection when mapping an already visited scene. This
has the advantage of real-time change detection and the convenience of being able to inspect changes
in the real world. Moreover, a deteriorated keyframe generation implies the need for additional
geometric wrapping, such as in when semantics knowledge is not available. There is also a need to
develop quantification tools that can further benefit from temporal alignment.
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