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Abstract: Mobile robots rely on odometry to navigate in areas where localization fails. Visual
odometry (VO), for instance, is a common solution for obtaining robust and consistent relative
motion estimates of the vehicle frame. In contrast, Global Positioning System (GPS) measurements
are typically used for absolute positioning and localization. However, when the constraint on absolute
accuracy is relaxed, accurate relative position estimates can be found with one single-frequency
GPS receiver by using time-differenced carrier phase (TDCP) measurements. In this paper, we
implement and field test a single-receiver GPS odometry algorithm based on the existing theory
of TDCP. We tailor our method for use on an unmanned ground vehicle (UGV) by incorporating
proven robotics tools such as a vehicle motion model and robust cost functions. In the first half of
our experiments, we evaluate our odometry on its own via a comparison with VO on the same test
trajectories. After 4.3 km of testing, the results show our GPS odometry method has a 79% lower
drift rate than a proven stereo VO method while maintaining a smooth error signal despite varying
satellite availability. GPS odometry can also make robots more robust to catastrophic failures of
their primary sensor when added to existing navigation pipelines. To prove this, we integrate our
GPS odometry solution into Visual Teach and Repeat (VT&R), an established visual, path-following
navigation framework. We perform further testing to show it can maintain accurate path following
and prevent failures in challenging conditions including full camera dropouts. Code is available at
https://github.com/utiasASRL/cpo.

Keywords: navigation, position estimation, terrestrial robotics

1. Introduction
Odometry is an important component of almost any mobile robotic navigation strategy; it takes
many forms including visual, visual-inertial, lidar, and wheel odometry. All of these variations use
different sensors to accomplish the common goal of estimating the vehicle’s path or trajectory. In
mapping, odometry allows local reconstruction of the environment and in localization, it is critical
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to the success of autonomous navigation systems such as Visual Teach and Repeat (VT&R) (Furgale
and Barfoot, 2010). In experience-based navigation (EBN) (Churchill and Newman, 2013) and multi-
experience localization (MEL) (Paton et al., 2016), odometry is used to bound pose uncertainty in
short sections (i.e., less than 50 m) where localization fails due to factors such as appearance change.
If odometry drift becomes too large, the robot may not be able to navigate safely. This in turn causes
a missed opportunity to improve the map. Better odometry allows a robot to dead-reckon for longer
sections and therefore drive further successfully.

One idea to improve a robot’s odometry is to consider other sensors. Single-frequency GPS
receivers are now ubiquitous, coming standard in almost every smartphone. First operational
in 1983 (Seeber, 2008), GPS allows an absolute positioning solution to be calculated anywhere
on Earth with a clear view of the sky. Since then, other Global Navigation Satellite System
(GNSS) constellations such as GLONASS, Galileo, and BeiDou have come online and may be
used independently or in combination with GPS. GPS has become an important tool for robotic
navigation. However, standard pseudorange GPS positioning does not have sufficient accuracy to
bound vehicle travel within the envelope required for visual localization, which typically degenerates
with decimetre-level lateral errors (Furgale and Barfoot, 2010). Utilizing other GPS observables over
short windows of time can improve relative positioning.

In this paper, we develop the Carrier Phase Odometry (CPO) project that uses time-differenced
carrier phase (TDCP) measurements as the basis of a full odometry solution for UGVs. CPO
is released as an open-source ROS2 (Quigley et al., 2009) package with code available at
https://github.com/utiasASRL/cpo. In Section 5.1, we analyze CPO’s performance on a set
of trajectories collected by a UGV over several days. We then compare the performance of this
single-receiver GPS odometry with stereo visual odometry (VO) on the same set of test trajectories
in Section 5.2. To the best of our knowledge, this is the first study comparing and contrasting
TDCP-based navigation with VO. Our results show CPO is a worthy alternative to VO in outdoor
applications.

CPO can also provide benefits when GPS does not serve as the main sensor on a robot. As
low-cost GPS receivers become standard, effectively utilizing the measurements from a single receiver
becomes important even for mobile robots that primarily rely on rich sensors such as cameras or lidar.
Robots unable to visually localize due to outdoor appearance change could drive longer distances
via dead-reckoning provided they have good odometry estimates, for example. A self-driving vehicle
relying on camera images needs a method to safely pull to the side of the road should that camera
be blocked by stray debris. To validate these assertions, we integrate CPO into a highly successful
visual path-following algorithm—VT&R. In a series of experiments, we show that single-receiver
GPS odometry can improve performance and prevent total failure under challenging conditions.

Section 2 of this paper summarizes relevant work on GPS positioning and TDCP to provide
background and put the remaining sections in context. In Section 3, we describe the theory used
to develop our GPS odometry and apply it in VT&R. Our field-testing involves a total of five
experiments and the procedures for these are explained in Section 4. In Section 5, the results are
summarized and discussed. Finally, we conclude and suggest several directions for future work in
Section 6.

2. Related Work
2.1. GPS positioning
Standard GPS positioning involves the trilateration of pseudorange measurements of four or more
dedicated positioning satellites. In good conditions, pseudorange-based positioning can achieve
accuracy on the order of 1–2 m despite several sources of error affecting the signal’s measured
time-of-flight (Kaplan and Hegarty, 2005). In addition to the pseudorange, GPS receivers can
also calculate the carrier phase of the signal based on its Doppler shift (Seeber, 2008). These
measurements are much less noisy but cannot be used directly due to the unknown integer ambiguity
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of wavelengths between the receiver and each satellite. Real-time kinematic (RTK) processing uses
a second, static receiver nearby. By comparing the pseudorange and carrier phase measurements of
both receivers, the integer ambiguities can be resolved over time providing centimetre-level accuracy.
However, the requirement for a dedicated base station and communications link make RTK expensive
and impractical for many applications.

GPS positioning has become a useful tool for robotic navigation. A common strategy is to combine
GPS measurements with those from an inertial measurement unit (IMU) often using a Kalman
filter (Cooper and Durrant-Whyte, 1994) or factor graph optimization (Wen et al., 2019). The two
sensors have several complementary properties. Together they may be used to detect low-frequency
faults in the IMU measurements and high-frequency faults in the GPS measurements (Sukkarieh
et al., 1999). More involved GPS techniques such as differential GPS (Zhao et al., 2014) and
RTK (Scherzinger, 2006) have also benefited from fusion with IMU measurements. In this work,
we investigate the potential of a single GPS receiver to provide accurate odometry estimates and
avoid the requirement of integrating an additional sensor such as an IMU into the robotic platform. It
should be noted, however, that our method is not incompatible with IMU measurements. Because
of the flexible, factor-graph representation, these could potentially be added to further increase
performance.

Sensors such as lidar and cameras have also been successfully combined with both low-cost
GPS (Imperoli et al., 2018) and more advanced setups (Ohno et al., 2004). Typically, GPS is used
as a global measurement to bound drift (Yu et al., 2019) in these sensor fusion algorithms. More
recently, the use of other GPS observables such as Doppler velocity (Wen and Hsu, 2021) have been
utilized. This can help improve the smoothness of the state estimate, especially during unstable
GPS conditions (Cao et al., 2022).

2.2. Time-Differenced Carrier Phase
The idea of comparing carrier phase measurements from the same GPS receiver at different times
was first proposed by Ulmer et al. (1995) but has received comparatively little attention in the
robotics community. The technique, commonly known as TDCP, was developed for static geomatic
surveying (Ulmer et al., 1995), (Michaud and Santerre, 2001), (Balard et al., 2006) but may be
extended to full trajectories. When a receiver is in phase lock with a satellite, the ambiguity
affecting carrier phase measurements is time-invariant. Within this period, differencing two phase
measurements will cancel the ambiguity and avoid the need to resolve it. Therefore better accuracy
can be achieved in estimating the relative receiver displacement between the two times, though
absolute positioning accuracy remains high (Michaud and Santerre, 2001). TDCP has been used in
applications as wide-ranging as vehicle convoying (Travis, 2010), (Pierce et al., 2017) and bird-flight
trajectory reconstruction (Traugott, 2011). Success has been shown in combining TDCP with
IMU measurements typically using a Kalman filter (Wendel and Trommer, 2004), (Wendel et al.,
2006), (Zhao, 2016) or an iterated extended Kalman filter (Soon et al., 2008).

Doppler velocity integration is another technique that has been used for single-receiver position-
ing. The Doppler velocity observable is closely related to the carrier phase observable but the latter
should be preferred for position estimation as it is less noisy (Wendel et al., 2003). Figure 1 compares
the performance of the three single-receiver positioning techniques we have discussed over a set of
short trajectories.

TDCP is versatile. In addition to relative positioning, TDCP-based techniques have been designed
to solve for absolute position (Liu et al., 2013) and receiver velocity (Ding and Wang, 2011).
The same “triple difference” idea that is key to TDCP can also be applied to differential GPS
positioning (van Graas and Lee, 1995) and used for cycle slip correction (Kim and Langley, 2002).
In this work, we optimize our implementation to solve for relative SE(3) pose—a typical output
of robot odometry algorithms. Unlike previous TDCP work, we also incorporate several robotic
state estimation tools including sliding-window filtering, robust cost functions, and a motion model
compatible with typical robot kinematics.
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Figure 1. Comparison of the mean relative position error for three different techniques using a single GPS
receiver across 12 independent paths. The TDCP method is both more accurate and much smoother than the
pseudorange positioning while also outperforming the integrated Doppler velocity.

3. Methodology
We briefly summarize the coordinate frames relevant to the following sections. The global East-
North-Up (ENU) frame, F

~
g, is a stationary frame tangential to the Earth at the vehicle start

position. All other frames are moving. The vehicle frame, F
~

v, is located at the centre of the vehicle
at axle height. All estimation is computed in F

~
v before being transformed to the GPS receiver

frame, F
~

r, for comparison with ground truth positions. The camera frame, F
~

c, is located at the left
camera of the stereo module. Finally, the origin of the satellite frame, F

~
s, is defined at the antenna

phase centre (APC) for calculating ranges. The VO algorithm is also configured to output estimates
in the vehicle frame.

3.1. Carrier Phase Error Equation
Whereas RTK positioning makes use of carrier phase measurements from two receivers separated in
space, TDCP positioning makes use of carrier phase measurements from a single receiver separated
by both time and space. The carrier phase range equation to a single satellite at time a is given by

Φa = ρa +N + cδR
a − cδS

a + Ea + Ta − Ia +ma + εa, (1)

where Φa is the measured phase in radians multiplied by the known wavelength so that all values
have units of metres. GPS receivers can measure the incoming phase quite accurately meaning the
white noise affecting the measurement, ε, is typically less than 2 mm (Kaplan and Hegarty, 2005).
However, the signal is affected by several sources of systematic error as it propagates from satellite
to receiver causing the measured range, Φ, to differ from the true range to the satellite, ρ. These
include receiver and satellite clock errors (δR and δS), satellite ephemeris error (E), tropospheric
delay (T ), ionospheric effects (I), and multipath (m).
N is the unknown wavelength ambiguity; if the receiver stays in phase lock with the satellite,

N is time-invariant. Therefore, as shown in Michaud (2001), we can eliminate it by differencing (1)
taken at two times, a and b:

Φb − Φa = ρba + cδR
ba − cδS

ba + Eba + Tba − Iba +mba + εba. (2)

The subscript ba denotes the difference between a quantity at time b and time a. The receiver clock
error is typically large so it must be dealt with explicitly, either by estimating it or differencing
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the equation again for two different satellites to eliminate it. The latter gives us our measurement
model:

Φ21
ba = ρ21

ba − cδ
S,21
ba + E21

ba + T 21
ba − I21

ba +m21
ba + ε21

ba . (3)

The term ρ21
ba , for example, denotes the double-difference

(
ρ2

b − ρ2
a

)
−
(
ρ1

b − ρ1
a

)
for a pair of satellites

1 and 2 at times a and b. The ranges making up ρ21
ba are calculated using

ρa =
∥∥rsr

g (ta)
∥∥ =

∥∥rsg
g (ta)− rrg

g (ta)
∥∥ , (4)

where rsg
g is the known satellite ephemeris and rrg

g is our state. The notation ‖r‖ denotes the
Euclidean norm of the vector r. It is important to recalculate the ephemeris at each measurement
time because the satellites travel at 3.9 km/s.

We will set up our estimation problem as an optimization with several factors (squared-error
terms). From (3), we can write our error term for one pair of satellites seen at one pair of positions as

e21
ba = Φ21

ba − ρ21
ba . (5)

Given n commonly seen satellites between ta and tb, our TDCP weighted least-squares factor is

Jba =
n∑

k=2
wk

(
ek1

ba

)2
, (6)

where wk is a scalar variance parameter, which we set as a constant in our implementation (though
it could be tuned if more information on the measurement quality from each satellite was known).
Jba is symbolized as a blue dot in Figure 2. We can then optimize the least-squares factor given
in (6) for our states, rrg

g (ta) and rrg
g (tb).

For optimization, a linearized error term is needed. We derive this by noting that rsr
g (ta) and

rsr
g (tb), the vectors from the receiver to a particular satellite at ta and tb, are approximately parallel

for small tba since the distance between receiver and satellite is much larger than the distance either
travels in this timespan. As illustrated in Figure 3, the range to the satellite can change due to both
the receiver’s movement and the satellite’s movement between measurement times. For succinctness,
we define the unit vector from the receiver to the satellite as u = rsr

g (ta)
‖rsr

g (ta)‖ . From Figure 3 we see that

Consecutive

Base

Dense

a) Potential TDCP Factor Configurations b) Our TDCP Estimator

TDCP Factor

WNOA Factor

VO Factor

Nonholonomic Factor

Visual Landmark

Pose Vertex

Figure 2. (a) Potential ways TDCP factors can be added. Due to the error characteristics of the phase range,
they all give very similar position estimates. The consecutive configuration was chosen for our estimator. (b)
Factor graph for our TDCP algorithm.
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Figure 3. In linearizing the error term, we make the assumption that the unit vectors from receiver to satellite
at times a and b are parallel. As a result, the difference in measured range due to receiver movement has the
same magnitude as the scalar projection of the receiver displacement vector onto the satellite vector.

the range difference due to the satellite’s cross-track movement is equal to the satellite displacement
vector projected onto this unit vector. Likewise, the change due to receiver movement (i.e., the
robot driving) corresponds to the negative of the receiver displacement vector projected onto u.
Combining these gives:

ρba = −ûT
(
rrg

g (tb)− rrg
g (ta)

)
+ ûT

(
rsg

g (tb)− rsg
g (ta)

)
, (7)

where the second half of the right-hand side (the satellite movement term) is independent of the
state. After substituting (7) into our error equation, (5), we can calculate the Jacobian required to
perform Gauss-Newton optimization. Details on the implementation of this optimization are given
in Section 3.4.

3.2. Carrier Phase Noise Properties
Our error equation, (5), constrains the transformation between the receiver pose at two times. Given
a set of carrier phase measurements collected at a fixed rate (e.g., 1Hz), we have a choice of how
to pair these measurements to form error terms. Figure 2(a) illustrates three potential options.
If our measurements at each timestamp were primarily affected by Gaussian noise, then the dense
strategy would be best. More factors in our factor graph would average out the noise and improve our
estimates. However, looking at our measurement model, (1), we see that the majority of error sources
are systematic in nature. That is, if the receiver could take two measurements of the carrier phase
at the same instant, they would be almost exactly the same save for the very small measurement
error, ε. The other error sources vary smoothly. Neglecting ε, we would find that eca, the error
term on the poses at times a and c, is a simple linear combination of ecb and eba. Therefore the
additional error terms in the dense configuration compared to the other configurations add very little
to the optimization problem besides computational burden. The base and consecutive strategies are
very similar, but the consecutive method has subtle advantages when the set of satellites available is
time-varying. In base, neighbouring pose estimates with respect to the base vertex may be calculated
with different satellites so the transformation between these vertices is liable to be less smooth.
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Some of the errors in (1), the phase range equation, can be mitigated through modelling.
It is typical to use the Klobuchar model (Klobuchar, 1987) to partially correct for ionospheric
effects, the parameters of which are available in the GPS navigation message. The Niell mapping
function (Niell, 1996) with the UNB3 model parameters (Collins et al., 1996) can be used to estimate
the tropospheric delay. Both models are a function of atmospheric conditions and satellite elevation.
Because atmospheric conditions change slowly and the errors are differenced in (7), their impact
is lessened compared to the effect on a single phase measurement. However, the effect of satellite
elevation change over the time difference can be significant for satellites close to the horizon. In
our experiments, we model the tropospheric delay but omit the ionospheric correction because
the applicable messages were not logged for all runs. The impact of atmospheric delays is further
explored in Section 5.1.1.

3.3. Carrier Phase Cycle Slip
A key requirement for being able to use our TDCP error equation is that the satellites involved must
have maintained continuous phase lock over the interval. In practice, this is not always guaranteed
as cycle slips can occur due to factors such as satellite occlusion, low signal-to-noise ratio, or the
multipath effect (Dai et al., 2009). Several cycle-slip detection methods exist and the optimal choice
depends on the type of GPS receiver being used. For multi-frequency receivers, the carrier phases at
two frequencies may be differenced to eliminate the majority of error sources and the continuity of
the result may be used as a test signal (Subirana et al., 2013). If two or more GPS frequencies are
available for the particular receiver, our method will take advantage of this approach. If only one
frequency is available, cycle slip can still be detected, albeit in a less robust manner, by comparing
the pseudorange and carrier phase measurements over time (Subirana et al., 2013).

When a cycle slip occurs, the satellite it affects is excluded from our optimization until continuous
phase lock is reacquired. The remaining satellites can still be used to form TDCP cost factors.
As detailed in Section 3.4, a robust cost function is applied for each term in the least-squares
optimization problem. As a result, outlier measurements—those that strongly disagree with the
other measurements and our motion model—will have minimal influence on the optimization result.
This means that even if our detection method fails to catch a cycle slip, our final state estimate will
not be significantly biased.

3.4. Odometry Implementation Details
Using the theory from previous sections, our goal was to create an easy-to-use package that would
provide live GPS odometry estimates to be used alone or as part of a larger navigation stack.
The result is the open-source CPO project found at https://github.com/utiasASRL/cpo. CPO
is a Robot Operating System (ROS)2 project designed to work with the majority of modern GPS
receivers. It consists of four packages. The cpo_frontend package acts as a driver and preprocessor
for the carrier phase measurements. The input is standard RTCM1004 (GPS observables) and
RTCM1019 (GPS ephemerides) messages logged over serial. The output of this package is a stream
of custom TDCP messages, defined in the cpo_interface package, published to a ROS2 topic. These
messages act as pseudomeasurements pairing a set of satellites observed at two consecutive time
points. The front-end node parses the binary RTCM messages, calculates approximate pseudorange
GPS solutions, and extracts vectors relevant to the estimation problem. It can detect when the
receiver loses phase lock with a particular satellite between consecutive GPS measurements and
exclude that satellite until phase lock is regained. This ensures the integer ambiguity is time-invariant
for all measurement pairs we use. Typically, phase lock will be maintained with the other satellites
such that a high-quality odometry estimate can still be obtained. The front-end node also estimates
and corrects for the tropospheric delay difference as discussed in 3.2.

The cpo_backend package is responsible for state estimation. Each pseudomeasurement message
received from the front end is used to construct n − 1 TDCP error terms, where n is the number
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of observed satellites. Carrier-phase measurements may be subject to outliers so a robust cost
function [dynamic covariance scaling (DCS) (Agarwal et al., 2013)] is used on the TDCP factors.
Our algorithm is designed and tested for a nonholonomic robot so factors that penalize lateral
velocity of the vehicle frame are added to the nonlinear least-squares cost function. We also use
a white-noise-on-acceleration (WNOA) motion prior (Anderson and Barfoot, 2015) to encourage
smoothness. Together, these allow us to resolve the vehicle orientation. Yaw and pitch are determined
by these factors implicitly aligning the longitudinal axis of the robot with the direction of the vehicle
frame velocity while roll is determined by the shape of the trajectory. To fit our use case, we have
assumed a ground vehicle on a primarily planar surface. Unlike other TDCP algorithms, the use
of a motion model such as this allows the robot to make use of carrier phase information and still
calculate a state estimate when less than four phase-locked satellites are available.

Optimization is handled by the simultaneous trajectory estimation and mapping (STEAM)
library (Anderson and Barfoot, 2015) over a sliding window. The user may use ROS2 parameters to
easily configure the relative importance of these factors as well as the size of the sliding window to fit
their application. The result is full SE(3) pose estimates of the vehicle in the ENU frame. These are
published with a standard ROS2 PoseWithCovariance message either at a fixed rate or with each
new incoming pseudomeasurement. This node also provides a query trajectory service. The service
accepts two timestamps and returns the relative pose and its covariance over the interval. The two
query times do not need to be at GPS measurement times as the continuous-time trajectory can be
queried at any point (Barfoot et al., 2014).

3.5. GPS Odometry in VT&R
CPO was designed to be flexible such that it may be used as a standalone package or integrated
into a more complex navigation stack. To validate this, we will show how our odometry method can
be added to VT&R to increase the autonomy rate of an already successful visual path following
system. We will first define VT&R and briefly describe its existing operation before explaining how
our GPS odometry may be utilized within its framework.

Autonomous path following through highly unstructured environments is a challenging yet
important task for mobile robots. VT&R utilizes a single, manually driven training example to
achieve this goal using only one stereo camera (Furgale and Barfoot, 2010). Similarly to simultaneous
localization and mapping (SLAM), the robot performs VO to estimate its relative motion and visual
localization to estimate its place in the map. Because it is repeating the same path, VT&R is able
to leverage the deliberately consistent camera viewpoint. The result is an extremely high autonomy
rate combined with few-centimetre-level path-tracking accuracy.

The success of VT&R is due in large part to the locally metric, globally topological map
formulation. Its pose graph stores measurements and transformation estimates in relation to their
neighbours rather than in a single privileged coordinate frame. This allows for state estimation
that is both highly accurate and computationally efficient. Computational complexity is decoupled
from map size. The formulation can be seen as an extension of submapping techniques (Chong
and Kleeman, 1999), (Williams, 2001), (Marshall et al., 2008) and the relative bundle adjustment
method of Sibley et al. (2009). Another key to VT&R’s success is the interleaving of dead-reckoning
from VO and localization (Furgale and Barfoot, 2010). We will show how we may use our GPS
odometry as an alternative form of dead-reckoning in the prediction step of VT&R.

We explored two possible strategies for integrating our GPS odometry into VT&R. Our first
approach was to add TDCP terms into the sliding-window bundle adjustment stage of its odometry
pipeline. In this tightly-coupled setup, the front-end node of CPO would run, publishing ROS2
messages that contain all the information needed to construct a TDCP factor. VT&R could then
subscribe to these messages and easily accommodate these new factors in the existing nonlinear
least-squares optimization problem.

Our second approach recognizes that accurate odometry is not a direct requirement for VT&R
and the path-tracking problem. Rather, odometry is utilized as a prior for the localization problem.
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Figure 4. Architecture diagram for our chosen approach to include GPS odometry in VT&R. All GPS estimation
is done separately from VT&R which can query the estimator to receive transformation estimates for its intra-run
edges.

In this ‘lazy’ approach, we calculate odometry using both sensors (when available) independently
in separate threads. GPS odometry is computed in the cpo_backend node while VO is computed
in VT&R’s navigator node as normal. We then let the localizer decide which of the two odometry
solutions is the best source to use as its prior when the time comes, instead of fusing the two
solutions directly. A diagram of the setup can be seen in Figure 4.

There are several advantages the “lazy” approach has over the tightly-coupled solution. Perhaps
the largest is that, from a practical point of view, it is much more easily extended to versions of
VT&R that swap the stereo camera used in this work for other primary sensors such as lidar or radar.
The tightly-coupled strategy required careful handling of edge cases in the stereo bundle adjustment
pipeline and the implementation would need to be rewritten for new bundle adjustment pipelines. In
the lazy strategy, the bundle adjustment pipeline does not need to know that GPS exists. Another
advantage of the lazy approach is that we do not have to balance the size of our sliding window
between the two sensors. We are free to optimize the sparse GPS factors over a larger window while
keeping the visual bundle adjustment over a small window containing many stereo landmark factors.
As well, parameter tuning becomes less important when we are not fusing the two sensors directly.
VT&R can get away with unrealistic covariances on its stereo landmark terms to some degree because
only the relative weighting of terms is important. When adding GPS terms to the optimization
problem, suddenly the results become more dependent on our choice of parameters. Finally, the lazy
approach avoids having to estimate and bookkeep the global orientation in VT&R. In the tightly-
coupled approach, the global orientation becomes an extra state variable that must be included in our
state vector if and only if we are using GPS factors. In the lazy approach, it is encapsulated in CPO.

In theory, the careful combination of two reliable measurement sources in the tightly-coupled
approach should produce a probabilistic estimator that outperforms either source alone. However,
even after careful tuning of parameters in the tightly coupled algorithm, we could not produce an
estimator that consistently outperformed both single-sensor odometry algorithms because of these
practical disadvantages. The ‘lazy’ strategy avoids these issues and as a result is used in the experi-
ments presented in this paper. The remainder of this section provides details on the implementation.

Because of our chosen approach, our algorithm runs very similarly to VT&R without GPS with
a couple of key differences. After a new keyframe is created and bundle adjustment has run, a
request is sent to CPO’s query trajectory service with the timestamp of the current keyframe, tk
and the previous keyframe, tk−1. The response, Tk,k−1 and its covariance, is stored in the pose
graph edge as a second, separate transformation. As the current keyframe was just captured and
the GPS measurements are asynchronous with respect to the camera images, the query trajectory
service typically has to extrapolate slightly past the latest GPS measurement. However, this is easily
handled by STEAM’s continuous-time estimation. To obtain a better estimate of Tk,k−1 utilizing
GPS measurements received after tk, the service is called again after a fixed delay and the VT&R
pose graph is updated accordingly.

The new transformations are depicted as green edges in Figure 5. In the localization problem, we
are required to estimate the transformation between the current repeat vertex, Vd, and the closest
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repeat

teach

Figure 5. Diagram of the localization chain showing the part of the pose graph relevant to the localization
problem. Transformation estimates from odometry within each run may be composed with the previous localization
result, Tca, to provide a prior for the current estimation problem.

teach vertex, Vb (Figure 5). The standard version of VT&R composes the edges from VO with the
most recent localization result to generate a prior:

Ťdb,vo = Tdc,voTcaT−1
ba,vo. (8)

With GPS odometry available, we now have an alternative method for generating this prior:

Ťdb,gps = Tdc,gpsTcaT−1
ba,gps. (9)

In the event of VO failure, we can now still calculate a prior via the GPS edges. If no GPS is
available, we can still use VO as before. If both are available, we can either compare their covariances
to determine which is likely to be more accurate or the user may decide to always prefer one sensor
or the other.

One reason a good prior is important is that it provides a good initial condition for localization.
Perhaps a more significant reason is that in the case where localization fails, the prior becomes our
estimate for Tdb. When VO fails, visual localization is also likely to fail so the GPS odometry prior
becomes very important.

We note this is not the only way GPS could be used in VT&R; Congram and Barfoot (2021)
provide an alternative way to fuse vision and GPS for localization in a way that does not require
a privileged frame or any post-processing of the map. However, our method in this paper has the
advantage of only requiring a single GPS receiver.

4. Experimental Setup
All data were collected aboard the Clearpath Grizzly UGV pictured in Figure 6. The vehicle
maintained an average velocity of 1m/s across terrain that included pavement and snow-covered
grass at the University of Toronto Institute for Aerospace Studies (UTIAS) campus. Stereo images
were captured by a front-facing Point Grey Research Bumblebee XB3 stereo camera, which has
a 24 cm baseline, a 66◦ horizontal field of view and captures 512 × 384 pixel images at a 16 Hz
framerate. GPS measurements were recorded by a NovAtel SMART6-L receiver mounted near the
front of the vehicle. Carrier phase measurements were logged at 1 Hz while RTK ground truth was
logged separately at 4Hz. The RTK positioning is expected to have an RMS error of 1cm + 1ppm
under nominal conditions.

4.1. GPS Odometry Experiments
The goal of the first experiment was to analyze the performance characteristics of our GPS odometry
algorithm. To collect the data, the Grizzly drove 11 separate runs over three data collection days
while logging raw GPS observables. Two of these days were during winter and the other during
summer. Figure 7 shows some sample images representative of the data collected. Each path featured
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Figure 6. The Clearpath Grizzly Robotic Utility Vehicle used for data collection.

Figure 7. Examples of images from the dataset used in the experiments. The varied environment included snow,
grass, and tall vegetation. Runs were primarily collected during daytime, although one path used in Section 5.3
was collected at nighttime.
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Figure 8. Overhead view of a representative run from the dataset showing the estimates of our GPS odometry
algorithm compared to the RTK ground truth. The estimates are smooth and accurate. The trajectory is almost
indistinguishable from the ground truth at this scale.

several turns of varying radii. An example of one of these paths can be seen in Figure 8. Paths ranged
in length from 209 to 404 m.

In this experiment, the data from each run were played back in real-time while the CPO algorithm
ran using its default parameters. The start of each of the trajectory estimates was placed coincident
to the ground truth start point allowing our estimates to be compared with ground truth for the
rest of the path. These results are presented in Figure 9.

We also perform two smaller studies. The first evaluates the impact of utilizing the tropospheric
correction in our estimator. The second validates that our estimator can still make use of the carrier
phase measurements when less than four phase-locked satellites are available. Results for these two
experiments are provided in Sections 5.1.1 and 5.1.2, respectively.

4.2. Comparison to Visual Odometry
The second experiment involved a study comparing TDCP odometry to VO to provide a point of
reference and a further evaluation. The stereo VO method used is based on parallel tracking and
mapping (PTAM) (Klein and Murray, 2007) and is the same as is used in VT&R. Motion estimates
are computed at framerate while landmark positions are optimized in a windowed bundle adjustment
after each keyframe. It is fast and reliable with the parameters pre-tuned for use on the Grizzly
UGV used to collect the data for our experiments.

On 8 of the 11 runs collected, stereo images were also logged. These runs were then split into a
total of 24 independent 50 m sections, approximately equally spaced, for evaluation. We chose 50m
as an evaluation distance as we do not anticipate driving a robot on dead reckoning farther than this
and it is sufficient for measuring odometry drift rate. As VO does not estimate orientation in the
global ENU frame, the 10 m of trajectory preceding the test section was used for alignment of the
VO estimates. The continuous-time trajectories computed by STEAM are used to interpolate the
VO estimates to the ground truth GPS timestamps (as they are asynchronous to the VO keyframe
timestamps). Evaluation is considered based on the amount of drift (absolute planar translation
error) after 50 m. These results can be seen in Figure 12.

4.3. Visual Teach and Repeat Experiments
Three further experiments were performed to study the effectiveness of using GPS odometry in
VT&R as discussed in Section 3.5. They were designed such that each one could validate a goal for
our combined algorithm.
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Figure 9. GPS odometry estimate errors with respect to ground truth for each test run. Runs are coloured
based on the day they were collected. Orange runs were collected on February 10, green runs on February 15,
and blue runs on August 6. While performance varies by run, all trajectories have a final positional error of less
than 2m.

1. Replacing the VO prior used by Visual Teach and Repeat 3 (VTR3) localization with a
GPS odometry prior provides comparable performance under nominal conditions. In theory,
the more accurate GPS odometry could provide a better prior than VO and therefore more
accurate localization. However, VO has shown it provides a sufficient prior for this task in
normal circumstances, so we only need to show that GPS can do at least as well.

2. The GPS prior can be relied on for dead-reckoning when we are not able to localize visually.
VTR3 often faces small sections where it cannot visually localize due to factors such as
appearance change. To test this we will create a difficult scenario for the robot by not allowing
the localization pipeline to use any feature matches for certain sections.

3. GPS odometry can be used to maintain path-following in the event of total VO failure. We
will test this by replacing the left image from the stereo camera with a blank image simulating,
for example, a total blockage of the camera. With GPS odometry, VTR3 should be able to
regain normal localization once the camera recovers. We will also show that without GPS, this
would result in a failed repeat.

We run each experiment first using a version of VTR3 without GPS, and then using our method
configured to replace VO with GPS odometry. We test on seven independent path combinations.
The first three paths are unique and approximately 60 m in length (one minute of driving per run).
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They are driven twice with one run serving as a teach and the second a repeat. For experiments
2 and 3, the sensor dropout is applied to a 20-second section midway through the repeat run to
illustrate the behaviour both when the dropout begins and when the sensor recovers. The terrain
seen during paths 1–3 is a combination of pavement, maintained grass, and small buildings. Paths
4–7 originate from several traversals of a path approximately 210 m in length. A longer dropout
encompassing approximately 100 m of driving is applied for repeats on these paths to test more
extreme scenarios. These paths were driven through a more natural environment with tall grass and
trees having been seen. The repeat of path 1 was manually driven with a large path-tracking error
to intentionally create challenging conditions. All other paths were autonomously driven providing
conditions more commonly experienced in VT&R. The results of these experiments are provided in
Section 5.3.

5. Results
5.1. Single-Receiver GPS Odometry
Satellite availability for the GPS-only experiment varied throughout the runs as buildings and even
the vehicle sensor mast itself caused partial occlusions of the sky. Despite this, the receiver kept
enough satellites in phase lock throughout the runs for a consistent position estimate at all times.
The median number of satellites seen was seven with a minimum of four and a maximum of nine.
Raw GPS data were logged for the first seven runs from which dilution of precision information
could be extracted. The minimum horizontal dilution of precision (HDOP) seen during these runs
was 0.9, the maximum HDOP was 4.4, and the median HDOP was 1.3.

Figure 8 shows the overhead view of our estimates versus the ground truth for one representative
run in the dataset. From this plot, we see the estimates closely match the shape of the ground truth
path and are smooth throughout. Table 1 summarizes the results for all 11 paths in the dataset
over 200 m in length. These runs each encompass an average of five minutes of driving, providing
enough data to characterize the error growth properties while dead-reckoning as seen in Figure 9.
We calculate drift rate for a given run as the horizontal position error with respect to ground truth
divided by distance travelled. We find the average drift rate across all runs, weighted by path length,
to be 0.38%. The worst-case run, run 8, still has a final drift of less than 1% of the trajectory’s
length. Together, these runs constitute 3.1km of driving.

As seen in Figure 9, errors from different data collection days are of similar magnitude to each
other, despite the different satellite conditions. Interestingly, the runs collected in August (blue
lines in Figure 9) are less smooth than the other runs, likely because the GPS measurements were
collected at a higher frequency leading to higher frequency estimate updates (10 Hz versus 1 Hz).
This may also be a result of the varying satellite availability as the robot drove through the wooded
area. In the February runs, the errors grew smoothly and approximately linearly. Near the end of

Table 1. GPS odometry results for full runs
Dataset Length (m) Final Error (m) Drift Rate (%)
1 305 0.53 0.17
2 227 1.48 0.65
3 320 1.78 0.56
4 404 1.24 0.31
5 324 0.64 0.20
6 383 0.84 0.22
7 280 0.95 0.34
8 210 1.55 0.74
9 209 1.02 0.49
10 209 0.45 0.22
11 209 1.13 0.54
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Table 2. Effect of correcting for tropospheric delay difference on final error
Final 2D Translation Error (m)

Dataset Distance Travelled (m) Without Tropospheric Correction With Correction
4 404 1.66 1.24
5 324 0.66 0.64
6 383 1.34 0.84
7 280 0.98 0.95

Table 3. Performance given 50m section of limited satellites
Final 2D Translation Error (m)

Dataset Distance Travelled (m) Full Satellites Limited Satellites
4 404 1.24 1.52
5 324 0.64 1.76
6 383 0.84 0.76
7 280 0.95 3.02

run 10, the surrounding foliage briefly prevents the estimator from using GPS measurements leading
to a spike in the error. Importantly, the robot is able to fall back on its motion model during this
section and the final dead-reckoning error is still reasonable.

5.1.1. Impact of Tropospheric Correction
There is some discrepancy among prior works that use TDCP on the importance of correcting for
atmospheric delays. Some works (Traugott, 2011) correct for it while others (Suzuki, 2020) assert
that over the small time period the carrier phase difference is calculated the delays can be considered
constant. To test this empirically we also run our algorithm on the data without the tropospheric
correction. Final errors are summarized in Table 2. We find on all runs the (relatively easy to calcu-
late) correction improves the final error, thus supporting its use. Interestingly, the performance gain
varies between runs, likely due to differences in satellite geometry. The tropospheric delay is roughly
proportional to 1/sin ε, where ε is the satellite elevation. Therefore the delays are more variable and
the correction is more important when using measurements from satellites lower in the sky.

5.1.2. Performance with Limited Satellite Availability
In pseudorange-based positioning, a minimum of four satellites are required to resolve a receiver
position. Using TDCP measurements alone, four phase-locked satellites are also needed to calculate
a relative baseline vector. In areas where less than four satellites are available, these algorithms must
either reset their estimation or use another method to bridge the gap such as the noisier pseudorange
solutions on either end of the section (Traugott, 2011). However, the use of a motion model in CPO
means we can still make use of the carrier phase measurements when only two or three satellites
are in phase lock. To show this, we perform an experiment on four of our datasets during which
we artificially limit satellite availability for a 50 m section. For each run, the estimator is only
given the first three satellites seen between 50 and 100 m along the path. The results are compared
in Figure 10 to the estimates with full satellite availability. The final errors are summarized in
Table 3.

Overall, the results are worse when satellite availability is limited in the 50m section, as expected,
though on runs 4 and 6 the final errors are comparable. The largest difference is seen in Run 7. In
this trial, the robot performed a series of significant turns during the section with limited availability
and finished the section travelling in the opposite direction. Though the CPO solution drifts, the
results are still much better than if we had relied on a motion model alone (effectively defaulting
to a constant velocity prior). Using GPS alone, a real-time solution could not be determined in
these sections for any of the runs. Instead, our algorithm is able to utilize the limited carrier phase
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Figure 10. Comparison of errors on four different datasets during the limited satellite availability experiments.
Between 50m and 100m along the path (grey background), the estimator was only allowed to use the first three
satellites seen in the limited scenario (darker lines). As expected, performance is worse compared to when full
satellites are available. However, our estimate is still able to make use of the GPS measurements and provide a
reasonable state estimate.

information while relying on the motion model to resolve the remaining degrees of freedom. As a
result, the average drift rate over these runs is only 0.51% in the partially limited satellite availability
scenario.

5.2. Comparison to Visual Odometry
Figure 11 shows an overhead view of the estimates from both GPS odometry and VO on three
of the test trajectories representative of the larger test set in the second experiment. Even at this
macroscopic scale, we can see the GPS odometry outperforms VO. Figure 12 depicts both the errors
for the individual runs and an average horizontal position error for each algorithm. After 50 m, the
TDCP method has a smaller translational error than VO on all but two of the 24 test trajectories.
VO has a mean final translational error of 1.02 m or 2.04% while TDCP does 79% better with a
mean error of 0.21 m or 0.42%. The variance in drift rate between runs is also a lot higher for VO
as can be seen in the spread of data in Figure 12. This implies the expected errors may be more
predictable for TDCP.

A similar number of satellites were available for the comparison experiment as in the GPS-only
experiment with the minimum five, the median seven, and the maximum nine. We note that the
Grizzly’s GPS receiver was not configured for use with a power-hungry stereo camera nearby so was
somewhat affected by electromagnetic interference. Proper shielding may have improved the satellite
availability. Looking more closely at the VO results, we see the number of feature matches varies
somewhat between the two major types of terrain seen—dry pavement and snow, but is enough
for a reasonable motion estimate throughout. There were no VO failures (i.e., there were always
enough landmark matches to produce a consistent estimate). We notice the VO tends to slightly
overestimate or underestimate distances within a run. As a result, the total translational error over a
full loop trajectory is smaller than the drift rate for shorter sections though still significant. Further
tuning might be able to improve VO performance slightly, but it is unlikely to reach the level of the
GPS odometry. Finally, we note the TDCP method also has computational advantages as it only
requires one error term per satellite pair compared to the potentially hundreds of stereo landmark
terms involved in VO. In our head-to-head comparison, GPS odometry was clearly superior in a
two-dimensional planar setting.
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Figure 11. Overhead view of ground truth and estimates for three of the 24 test trajectories. VO drifts noticeably
further from ground truth than the TDCP-based odometry.
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Figure 12. Comparison of VO and TDCP-based single-receiver GPS odometry position drift. The fainter lines
represent individual trajectories while the darker line plots the average error for the algorithm.

Table 4. Comparison of using GPS vs VO as lo-
calization prior in VT&R under nominal conditions
(experiment 1).

Mean Lateral Localization Error (m)

Path VO Prior GPS Prior
1 0.022 0.022
2 0.081 0.020
3 0.036 0.035
4 0.025 0.024
5 0.029 0.028
6 0.028 0.028
7 0.026 0.026

5.3. Performance in VT&R
5.3.1. Experiment 1: Nominal Conditions
Figure 13 shows the results for experiment 1 on one shorter path (path 3) and one longer path
(path 7). Path 3 had the most challenging conditions and shows the worst-case performance of our
method. The error plotted in this section is the difference between our estimated path-tracking offset
from localization compared to the ground truth path-tracking error. We show the lateral error in the
vehicle frame as this is most important for maintaining accurate path tracking. Table 4 summarizes
the results for this experiment across all paths.

In experiment 1, the full stereo stream is available to both algorithms and no adverse conditions
are simulated. Both the VO and the GPS odometry methods provided similar performance. Three
of the paths had both methods giving the same mean localization error while the GPS odometry
performed better on the other four. However, the difference was very small. This was expected as
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Figure 13. The results of experiment 1 on one of the short paths (top) and one of the long paths (bottom).
The upper subplot shows the errors along the path for each algorithm while the lower subplot shows where
visual odometry (purple) and visual localization (orange) were successful. In this experiment, full use of vision
was available, though some naturally occurring localization failures were seen on path 3 due to the nighttime
conditions.

the relative weight of the prior is reduced when many visual features are available for localization.
Therefore, under conditions where VT&R is already highly successful, our addition does not degrade
that performance. For path 3, the manual driving and nighttime conditions created some natural
localization failures, as seen in the bottom subplot of Figure 13. However, both methods were able
to bound errors to a reasonable level for path-tracking.

5.3.2. Experiment 2: Dead Reckoning
VT&R attempts visual localization during a repeat run when the number of feature matches with
respect to the map reaches a minimum threshold. In experiment 2, we simulate a prolonged section
where visual localization is not possible by forcing the number of feature matches to be less than
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Figure 14. The results of experiment 2 on one of the short paths (top) and one of the long paths (bottom).
The upper subplot shows the errors along the path for each algorithm while the lower subplot shows where visual
odometry (purple) and visual localization (orange) were successful. In this experiment, we prevented the robot
from using visual localization in the middle section of the repeat runs, forcing it to rely on its prior.

the threshold. Therefore the algorithm must instead rely heavily on its prior. The feature matches
used to perform VO are not affected. The visual localization dropout lasts for approximately 20 m
of driving on the shorter paths and 100m on the longer ones. These results can be seen in Figure 14
and are summarized in Table 5.

We find the localization error grows larger in the section in which we prevent visual localization,
as expected. This is true for both methods and on all paths. For four of the seven paths, the mean
error with the GPS prior is higher than the VO prior but, they are of similar magnitudes for all
paths. Both algorithms do well enough that when the robot is allowed to localize again, it still
knows where it is along the path and the localization error quickly drops. None of the runs would be
considered a failure as the robot completed the path in all cases. Therefore, when VO is successful,
either method is suitable to use as a prior when visual localization struggles.
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Table 5. Comparison of using GPS vs. VO as
localization prior in VT&R when visual localization
is partially unavailable (experiment 2).

Mean Lateral Localization Error (m)

Path VO Prior GPS Prior
1 0.031 0.054
2 0.104 0.030
3 0.042 0.079
4 0.046 0.134
5 0.217 0.091
6 0.171 0.195
7 0.082 0.080

Table 6. Comparison of using GPS vs VO as
localization prior in VT&R when visual odometry
is partially unavailable (experiment 3).

Mean Lateral Localization Error (m)

Path VO Prior GPS Prior
1 6.767 0.077
2 3.704 0.036
3 1.525 0.092
4 10.646 0.375
5 10.283 0.248
6 10.932 0.251
7 11.753 0.152

5.3.3. Experiment 3: Camera Dropout
In experiment 3, we again simulate a sensor dropout over the middle section of each repeat, but this
time we replace the left camera images with black images instead of only blocking visual localization.
As a result, stereo VO also fails. Figure 15 and Table 6 show our results.

In this experiment, the vision-only pipeline is less successful. Without GPS, the robot can rely
on its motion model for a short period but quickly becomes lost without the proper means for
dead-reckoning. Even when VO recovers, the robot is unsure of where it is in relation to the path
and is not able to relocalize. This produces the large mean errors in Table 6. Every run would be
considered a failure as the robot ends up completely off the path. When using the GPS prior, we
do not rely on VO while GPS odometry is available. As a result, errors are similar in magnitude to
experiment 2. With GPS, the robot quickly recovers and accurately localizes when the camera images
are restored. Our addition of GPS odometry to the VT&R pipeline prevented failure on every run.

6. Conclusion and Future Work
In this paper, we described a method for highly accurate odometry using a single GPS receiver.
While GPS users are typically concerned with the absolute accuracy of their positioning algorithms,
we recognize that only relative accuracy is required for odometry. Relaxing this constraint meant
we could cancel many of the temporally correlated error sources affecting GPS and get better
displacement estimates. We compared the performance of our single-receiver GPS odometry with
stereo VO on the same set of test trajectories. The novel contributions of this work are as follows:

(a) we detailed a practical TDCP-based odometry algorithm complete with a motion model for
use on a UGV,

(b) we provided the first direct comparison of single-receiver GPS and VO estimation,
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Figure 15. The results of experiment 3 on one of the short paths (top) and one of the long paths (bottom).
The upper subplot shows the errors along the path for each algorithm while the lower subplot shows where visual
odometry (purple) and visual localization (orange) were successful. The gap in the purple bar shows where the
camera failure was simulated.

(c) we showed how our TDCP-odometry can be used to complement VT&R’s localization
pipeline leading to an improved autonomy rate.

We believe TDCP odometry is an effective navigation technique and is underutilized in robotics
compared to other odometry methods. To show this, we simultaneously collected a large set of GPS
data and stereo imagery from a ground robot driving outdoors. We evaluated our TDCP-based
single-receiver, single-frequency GPS odometry algorithm against a proven stereo VO pipeline in
the first known experiment of this kind. The results showed the GPS odometry produced far smaller
positional errors with respect to the RTK ground truth. TDCP odometry is a good alternative to
VO for outdoor navigation. VO is still preferred in areas where occlusions or other sources of GPS
signal interference are a frequent issue.
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For added robustness, the two sensors may be combined. In Section 3.5, we showed how one can
use GPS as a backup or alternative for VO in VTR3. GPS odometry provides an accurate prior
allowing localization to achieve similar performance as with VO in good conditions and preventing
total localization failures in challenging scenarios. As this is run in a separate node, the details are
abstracted from the main stereo camera pipeline allowing our changes to easily be used in future
varieties of VT&R such as those using radar or lidar as the primary sensor. A single GPS receiver
is the only additional equipment required to obtain this improved robustness of our system when
vision struggles. Beyond VT&R, CPO can be run as a standalone GPS odometry package and
is available open-source at https://github.com/utiasASRL/cpo. To the best of our knowledge,
this is the only widely available TDCP software package and one of the few open-source navigation
projects developed in ROS2. The project provides accurate odometry with final drift rates averaging
just 0.38% in our experiments.

One interesting observation from the results of Section 5.1 was that the position errors with
respect to ground truth vary more linearly than we would expect in a random walk, as odometry
is often modelled. We hypothesize this is due to the uncorrected error sources in the carrier phase
double-difference equation [Equation (3)] varying smoothly. We might expect these error sources to
be autocorrelated given they are a function of satellites moving at near-constant velocity sending
signals through an atmosphere that changes gradually. An interesting extension might be to use
other sensors or a motion model to estimate and correct for this linear bias.

Though we did not explore incorporating additional GNSS constellations in our algorithm, it is
likely their use could improve positioning accuracy even further by increasing the number of satellites
available. Improved odometry allows robots to build better maps and safely drive further when local-
ization against a map is challenging. This would be beneficial for many robots and robotic systems.
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